Applied Physics A

, 124:821 | Cite as

In vitro bioactivity and biocompatibility of femtosecond laser-modified Ti6Al4V alloy

  • Shazia ShaikhEmail author
  • Sunita Kedia
  • Ananda Guha Majumdar
  • Mahesh Subramanian
  • Sucharita SinhaEmail author


The present work investigates bioactivity and biocompatibility of femtosecond (fs) laser surface-modified Ti6Al4V alloy (Ti-alloy). Self-aligned conical surface features were generated on Ti-alloy when laser irradiated employing a Ti:sapphire pulsed fs laser of wavelength 800 nm. Modification of surface chemical composition resulting from fs-laser irradiation of Ti-alloy was examined using Grazing incidence X-ray diffraction (GIXRD) technique and micro-Raman spectroscopy. Sub-oxide phase of titanium was detected on Ti-alloy surface post-fs-laser irradiation leading to increased oxygen vacancies on sample surface. For in vitro bioactivity tests, untreated and fs-laser-treated samples were immersed in simulated body fluid for 2 weeks. Evidence of hydroxyapatite deposition on both untreated Ti-alloy, as well as, fs-laser-treated Ti-alloy surfaces after in vitro tests were provided by scanning electron microscopy (SEM), energy-dispersive X-ray analysis (EDX), GIXRD, Fourier transform infrared spectroscopy (FTIR), and micro-Raman spectroscopy. Superior growth of HAP was observed on fs-laser-modified Ti-alloy surface in comparison with untreated surface. Biocompatibility of the laser-treated Ti-alloy was investigated by studying anchoring and growth of human osteosarcoma cell line (U2OS) on it. Using MTT assay technique in vitro cell viability and growth potential in the presence of untreated and laser-treated Ti-alloy samples were assessed. MTT test results demonstrated that, neither cell viability, nor growth were affected in the presence of either the untreated or laser-treated sample surfaces. In addition, in comparison with the untreated Ti-alloy surface, the fs-laser-treated Ti-alloy surface showed more efficient cellular attachment when examined under confocal microscope.


  1. 1.
    L.N. Wang, M. Jin, Y. Zheng, Y. Guan, X. Lu, L. Jing-Li, Nanotubular surface modification of metallic implants via electrochemical anodization technique. Int. J. Nanomed. 9, 4421–4435 (2014)CrossRefGoogle Scholar
  2. 2.
    M. Balazic, J. Kopac, M.J. Jackson, W. Ahmed, Review: titanium and titanium alloy applications in medicine. Int. J. Nano. Biomater. 1(1), 8933–8941 (2007)CrossRefGoogle Scholar
  3. 3.
    R. van Noort, Review titanium: the implant material of today. J. Mater. Sci. 22, 3801–3811 (1987)ADSCrossRefGoogle Scholar
  4. 4.
    D.A. Puleo, A. Nanci, Understanding and controlling the bone-implant interface. Biomaterials 20, 2311–2321 (1999)CrossRefGoogle Scholar
  5. 5.
    S. Nishiguchi, H. Kato, H. Fujita, M. Oka, H.M. Kim, T. Kokubo, T. Nakamura, Titanium metals form direct bonding to bone after alkali and heat treatments. Biomaterials 22, 2525–2533 (2001)CrossRefGoogle Scholar
  6. 6.
    S.A. Hacking, E.J. Harvey, M. Tanzer, J.J. Krygier, J.D. Bobyn, Acidetched microtexture for enhancement of bone growth into porouscoated implants. J. Bone Jt. Surg. 85B, 1182–1189 (2003)CrossRefGoogle Scholar
  7. 7.
    I.V. Pylypchuk, A.L. Petranovskaya, P.P. Gorbyk, A.M. Korduban, P.E. Markovsky, O.M. Ivasishin, Biomimetic hydroxyapatite growth on functionalized surfaces of Ti-6Al-4V and Ti-Zr- Nb alloys. Nanoscale Res. Lett. 10, 338 (2015)ADSCrossRefGoogle Scholar
  8. 8.
    H. Tsuchiya, J.M. Macak, L. Muller, J. Kunze, F. Muller, P. Greil, S. Virtanen, P. Schmuki, HAP growth on anodic TiO2 nanotubes. J. Biomed. Mater. Res. Part A 17, 30677 (2005)Google Scholar
  9. 9.
    F. Hilario, V. Roche, R.P. Nogueira, A.M. Junior, Influence of morphology and crystalline structure of TiO2 nanotubes on their electrochemical properties and apatite-forming ability. Electrochim. Acta 245, 337–349 (2017)CrossRefGoogle Scholar
  10. 10.
    A. Sola, D. Bellucci, V. Cannillo, A. Cattini, Bioactive glass coatings: a review. Surf. Eng. 27, 560–571 (2011)CrossRefGoogle Scholar
  11. 11.
    K. Van Dijk, H.G. Schaeken, J.G.G. Wolke, J.A. Jansen, Influence of annealing temperature on RF magnetron sputtered calcium phosphate coatings. Biomaterials 17, 159 (1998)Google Scholar
  12. 12.
    M. Wei, A.J. Ruys, B.K. Milthorpe, C.C. Sorrell, Precipitation of HAP nanoparticles: effects of precipitation method on electrophoretic deposition. J. Mater. Sci. Mater. Med. 16(4), 319–324 (2005)CrossRefGoogle Scholar
  13. 13.
    L. Le Guehennec, A. Soueidan, P. Layrolle, Y. Amouriq, Surface treatments of titanium dental implants for rapid osseointegration. Dent. Mater. 23, 844–854 (2007)CrossRefGoogle Scholar
  14. 14.
    N. Lin, D. Li, R. Xie, Z. Wang, B. Tang, Review surface texturebased surface treatments on Ti6Al4V titanium alloys for tribological and biological applications. A mini review. Materials 11(4), 487 (2018)Google Scholar
  15. 15.
    K. Anselme, P. Linez, M. Bigerelle, D. Le Maguer, A. Le Maguer, P. Hardouin, H.F. Hildebrand, A. Iost, J.M. Leroy, The relative influence of the topography and chemistry of TiAl6V4 surfaces on osteoblastic cell behaviour. Biomaterials 21(15), 1567–1577 (2000)CrossRefGoogle Scholar
  16. 16.
    H. Wang, C. Liang, Y. Yang, C. Li, Bioactivities of a Ti surface ablated with a femtosecond laser through SBF. Biomed. Mater. 5(5), 054115 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    C. Liang, H. Wang, J. Yang, Y. Yang, X. Yang, Surface modification of cp-Ti using femtosecond laser micromachining and the deposition of Ca/P layer. Mater. Lett. 62, 3783–3786 (2008)CrossRefGoogle Scholar
  18. 18.
    B.K. Nayak, M.C. Gupta, Self-organized micro/nano structures in metal surfaces by ultrafast laser irradiation. Opt. Lasers Eng. 48, 940–949 (2010)CrossRefGoogle Scholar
  19. 19.
    M. Tsukamoto, K. Asuka, H. Nakano, M. Hashida, M. Katto, N. Abe, M. Fujita, Periodic microstructures produced by femtosecond laser irradiation on titanium plate. Vacuum 80(11–12), 1346–1350 (2006)ADSCrossRefGoogle Scholar
  20. 20.
    J. Bonse, J. Kruger, Femtosecond laser-induced periodic surface structures. J. Laser Appl. 24, 042006 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    W.A. Loesberg, J. Te Riet, F.C. Van Delft, P. Schon, C.G. Figdor, S. Speller, J.J. van Loon, X.F. Walboomers, J.A. Jansen, The threshold at which substrate nanogroove dimensions may influence fibroblast alignment and adhesion. Biomaterials 28(27), 3944–3951 (2007)CrossRefGoogle Scholar
  22. 22.
    W.O. Soboyejo, B. Nemetski, S. Allameh, N. Marcantonio, C. Mercer, J. Ricci, Interactions between MC3T3-E1 cells and textured Ti6Al4V surfaces. J. Biomed. Mater. Res. Banner 62(1), 56–72 (2002)CrossRefGoogle Scholar
  23. 23.
    V. Dumas, A. Guignandon, L. Vico, C. Mauclair, X. Zapata, M.T. Linossier, W. Bouleftour, J. Granier, S. Peyroche, J.C. Dumas, H. Zahouani, Femtosecond laser nano/micro patterning of titanium influences mesenchymal stem cell adhesion and commitment. Biomed. Mater. 10(5), 055002 (2015)CrossRefGoogle Scholar
  24. 24.
    S. Shaikh, S. Kedia, A.K. Singh, K. Sharma, S. Sinha, Surface treatment of 45S5, bioglass using femtosecond laser to achieve superior growth of HAP. J. Laser Appl. 29, 022004 (2017)ADSCrossRefGoogle Scholar
  25. 25.
    S. Sinha, A.K. Singh, Self-assembled microcones generated on solid surface through pulsed laser irradiation. Adv. Mater. Lett. 4(6), 492–496 (2013)CrossRefGoogle Scholar
  26. 26.
    B. Xu, H.Y. Sohn, Y. Mohassab, Y. Lan, Structures, preparation and applications of titanium suboxides. RSC Adv. 6, 79706–79722 (2016)CrossRefGoogle Scholar
  27. 27.
    Y. Levy, T.J. Derrien, N.M. Bulgakova, E.L. Gurevich, T. Mocek, Relaxation dynamics of femtosecond-laser-induced temperature modulation on the surfaces of metals and semiconductors. Appl. Surf. Sci. 374, 157–164 (2016)ADSCrossRefGoogle Scholar
  28. 28.
    Y. Chen, J. Mao, Sol–gel preparation and characterization of black titanium oxides Ti2O3 and Ti3O5. J. Mater. Sci. Mater. Electron. 25(3), 1284–1288 (2014)CrossRefGoogle Scholar
  29. 29.
    S.M. Oh, J.G. Li, T. Ishigaki, Nanocrystalline TiO2 powders synthesized by in-flight oxidation of TiN in thermal plasma: mechanisms of phase selection and particle morphology evolution. J. Mater. Res. 20(2), 529–537 (2005)ADSCrossRefGoogle Scholar
  30. 30.
    J. Lu, H. Yu, C. Chen, Biological properties of calcium phosphate biomaterials for bone repair: a review. RSC Adv. 8, 2015–2033 (2018)CrossRefGoogle Scholar
  31. 31.
    Y. Zhao, T.Y. Xiong, Formation of bioactive titania films under specific anodisation conditions. Surf. Eng. 28(5), 371–376 (2012)ADSCrossRefGoogle Scholar
  32. 32.
    A. Michelot, S. Sarda, C. Audin, E. Deydier, E. Manoury, R. Poli, C. Rey, Spectroscopic characterisation of HAP and nanocrystalline apatite with grafted aminopropyltriethoxysilane: nature of silane–surface interaction. J. Mater. Sci. 50(17), 5746–5757 (2015)ADSCrossRefGoogle Scholar
  33. 33.
    H. Shalom, Y. Feldman, R. Rosentsveig, I. Pinkas, I. Kaplan-Ashiri, A. Moshkovich, V. Perfilyev, L. Rapoport, R. Tenne, Electrophoretic deposition of hydroxyapatite film containing re-doped MoS2 nanoparticles. Int. J. Mol. Sci. 19(3), 657 (2018)CrossRefGoogle Scholar
  34. 34.
    L.M. Liu, P. Crawford, P. Hu, The interaction between adsorbed OH and O2 on TiO2 surfaces. Prog. Surf. Sci. 84, 155–176 (2008)ADSCrossRefGoogle Scholar
  35. 35.
    H.H. Huang, C.T. Ho, T.H. Lee, T.L. Lee, K.K. Liao, F.L. Chen, Effect of surface roughness of ground titanium on initial cell adhesion. Biomol. Eng. 21(3–5), 93–97 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laser and Plasma Surface Processing SectionBhabha Atomic Research CentreMumbaiIndia
  2. 2.University of MumbaiMumbaiIndia
  3. 3.Bio-Organic DivisionsBhabha Atomic Research CentreMumbaiIndia
  4. 4.Homi Bhabha National InstituteMumbaiIndia

Personalised recommendations