Applied Physics A

, 124:809 | Cite as

Controlling ambipolar current of dopingless tunnel field-effect transistor

  • Sukeshni TirkeyEmail author
  • Dharmendra Singh Yadav
  • Dheeraj Sharma


Ambipolarity in tunnel field-effect transistor (TFET) is a subject of grave concern in the current scenario of the semiconductor industry as this property of device limits its usability in CMOS circuit applications. In this concern, this paper presents a new approach to suppress the ambipolar behavior of dopingless TFET (DL TFET) by controlling the lateral band-to-band tunneling at the drain/channel interface. To execute this, a metal strip is embedded inside the oxide region between gate and drain terminals to modulate the energy bands for preventing the tunneling of charge carriers. The energy bands are widened at the drain-channel junction using this technique and correspondingly ambipolarity is reduced by a factor of \(10^{11}\). The variation in the energy bands is examined under different negative gate bias for the proposed device and conventional device which has shown that the energy barrier for the proposed device remains wider for different voltages under the influence of metal embedded. Alignment of the metal strip is varied to obtain the desired performance of the device. In this regard, optimization of work function and length of metal strip along with its position is demonstrated considering its impact on the ambipolar current and ON-state current, which gave 4.0 eV work function and 20 nm as the optimized work function and length of the metal strip, respectively.


  1. 1.
    G.E. Moore, Cramming more components onto integrated circuits. Electron. Mag. 38, 114–117 (1965)Google Scholar
  2. 2.
    J.P. Colinge (ed.), FinFETs and Other Multi-Gate Transistors, vol. 73 (Springer, New York, 2008)Google Scholar
  3. 3.
    Q. Zhang, W. Zhao, A. Seabaugh, Low-subthreshold-swing tunnel transistors. IEEE Electron Device Lett. 27(4), 297–300 (2006)ADSCrossRefGoogle Scholar
  4. 4.
    Y. Khatami, K. Banerjee, Steep subthreshold slope n- and p-type tunnel-FET devices for low-power and energy-efficient digital circuits. IEEE Trans. Electron Devices 56(11), 2752–2761 (2009)ADSCrossRefGoogle Scholar
  5. 5.
    S. Mookerjea, S. Datta, Comparative study of Si, Ge and InAs based steep subthreshold slope tunnel transistors for 0.25 V supply voltage logic applications, in Device Research Conference, Santa Barbara, CA (2008), pp. 47–48Google Scholar
  6. 6.
    R. Gandhi, Z. Chen, N. Singh, K. Banerjee, S. Lee, Vertical Si-nanowire n-type tunneling FETs with low subthreshold swing (\(\le 50 \text{ mV/decade }\) ) at room temperature. IEEE Electron Device Lett. 32(4), 437–439 (2011)ADSCrossRefGoogle Scholar
  7. 7.
    A.C. Seabaugh, Q. Zhang, Low-voltage tunnel transistors for beyond CMOS logic. Proc. IEEE. 98(12), 2095–2110 (2010)CrossRefGoogle Scholar
  8. 8.
    R. Asra, M. Shrivastava, K.V.R.M. Murali, R.K. Pandey, H. Gossner, V.R. Rao, A tunnel FET for \(\text{ V }_{\text{DD}}\) scaling below 0.6 V with a CMOS-comparable performance. IEEE Trans. Electron Devices 58(7), 1855–1863 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    A.R. Trivedi, M.F. Amir, S. Mukhopadhyay, Ultra-low power electronics with Si/Ge tunnel FET, in Design, Automation and Test in Europe Conference and Exhibition, Dresden, (2014), pp. 1–6Google Scholar
  10. 10.
    A.M. Ionescu, H. Riel, Tunnel field-effect transistors as energyefficient electronic switches. Nature 479(7373), 329–337 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    K. Boucart, A.M. Ionescu, Double-gate tunnel TFET with high-\(\kappa\) gate dielectric. IEEE Trans. Electron Devices 54(7), 1725–1733 (2007)ADSCrossRefGoogle Scholar
  12. 12.
    B. Raad, K. Nigam, D. Sharma, P. Kondekar, Dielectric and work function engineered TFET for ambipolar suppression and RF performance enhancement. Electron. Lett. 52(9), 770–772 (2016)CrossRefGoogle Scholar
  13. 13.
    K. Boucart, A.M. Ionescu, Length scaling of the double gate tunnel FET with a high-\(\kappa\) gate dielectric. Solid State Electron. 51(11–12), 1500–1507 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    K.K. Bhuwalka, J. Schulze, I. Eisele, Scaling the vertical tunnel FET with tunnel bandgap modulation and gate workfunction engineering. IEEE Trans. Electron Devices 52(5), 909–917 (2005)ADSCrossRefGoogle Scholar
  15. 15.
    K.K. Bhuwalka, M. Born, M. Schindler, M. Schmidt, T. Sulima, I. Eisele, P-channel tunnel field-effect transistors down to sub-50 nm channel lengths. Jpn. J. Appl. Phys. 45(4B), 3106–3109 (2006) (Part 1) ADSCrossRefGoogle Scholar
  16. 16.
    M.J. Kumar, S. Janardhanan, Doping-less tunnel field effect transistor: design and investigation. IEEE Trans. Electron Devices 60(10), 3285–3290 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    M.S. Ram, D.B. Abdi, Dopingless PNPN tunnel FET with improvedperformance: design and analysis. Superlattices Microstruct. 82, 430–43 (2015)ADSCrossRefGoogle Scholar
  18. 18.
    A. Hraziia, C. Andrei, A. Vladimirescu, A. Amara, C. Anghel, An analysis on the ambipolar current in Si double-gate tunnel FETs. Solid State Electron. 70, 67–72 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    V. Vijayvargiya, S.K. Vishvakarma, Effect of drain doping profile on double-gate tunnel field-effect transistor and its influence on device RF performance. IEEE Trans. Nanotechnol. 13(5), 974–981 (2014)ADSCrossRefGoogle Scholar
  20. 20.
    B.R. Raad, D. Sharma, K. Nigam, P. Kondekar, Physics-based simulation study of high-performance gallium arsenide phosphideindium gallium arsenide tunnel field-effect transistor. IET Micro Nano Lett. 11(97), 366–368 (2016)CrossRefGoogle Scholar
  21. 21.
    H. Wang, S. Chang, Y. Hu, H. He, J. He, Q. Huang, F. He, G. Wang, A novel barrier controlled tunnel FET. IEEE Electron Device Lett. 35(7), 798–800 (2014)CrossRefGoogle Scholar
  22. 22.
    W.Y. Choi, W. Lee, Hetero-gate-dielectric tunneling field-effect transistors. IEEE Trans. Nanotechnol. 57(9), 2317–2319 (2010)ADSCrossRefGoogle Scholar
  23. 23.
    B.R. Raad, K. Nigam, D. Sharma, P.N. Kondekar, Performance investigation of bandgap, gate material work function and gate dielectric engineered TFET with device reliability improvement. Superlattices Microstruct. 94, 138–146 (2016)ADSCrossRefGoogle Scholar
  24. 24.
    D.B. Abdi, M. Jagadesh Kumar, Controlling ambipolar current in tunneling FETs using overlapping gate-on-drain. IEEE J. Electron Devices Soc. 2(6), 187–190 (2014)CrossRefGoogle Scholar
  25. 25.
    S. Sahay, M.J. Kumar, Controlling the drain side tunneling width to reduce ambipolar current in tunnel FETs using heterodielectric BOX. IEEE Trans. Electrons Devices 62(11), 3882–3885 (2015)ADSCrossRefGoogle Scholar
  26. 26.
    S. Tirkey, D. Sharma, D.S. Yadav, S. Yadav, Analysis of a novel metal implant junctionless tunnel FET for better DC and analog/RF electrostatic parameters. IEEE Trans. Electrons Devices 64(9), 3943–3950 (2017)ADSCrossRefGoogle Scholar
  27. 27.
    B.R. Raad, S. Tirkey, D. Sharma, P.N. Kondekar, A new design approach of dopingless tunnel FET for enhancement of device characteristics. IEEE Trans. Electrons Devices 64(4), 1830–1836 (2017)ADSCrossRefGoogle Scholar
  28. 28.
    S. Tirkey, D. Sharma, B.R. Raad, D.S. Yadav, Introduction of a metal strip in oxide region of junctionless tunnel field-effect transistor to improve DC and RF performance. J. Comput. Electron. 16(3), 714–720 (2017)CrossRefGoogle Scholar
  29. 29.
    P. Ranade, H. Takeuchi, T.J. King, C. Hu, Work function engineering of molybdenum gate electrodes by nitrogen implantation. Electrochem. Solid State Lett. 4(11), G85–G87 (2001)CrossRefGoogle Scholar
  30. 30.
    ATLAS Device Simulation Software, Silvaco Int., Santa Clara, CA, USA (2014)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.PDPM Indian Institute of Information Technology, Design and Manufacturing JabalpurJabalpurIndia
  2. 2.Thapar Institute of Engineering and TechnologyPatialaIndia

Personalised recommendations