Advertisement

Applied Physics A

, 124:804 | Cite as

Preparation and thermal conductivities of diamond/SiC composites

  • Wei ZhengEmail author
  • Xinbo He
  • Mao Wu
  • Shubin Ren
  • Shunli Cao
  • Dandan Guan
  • Rongjun Liu
  • Xuanhui Qu
Article
  • 70 Downloads

Abstract

Diamond/SiC composites have been prepared by Si vapor reactive infiltration in vacuum at 1650 °C using phenolic resin, graphite, and diamond to generate SiC by the Si–C reaction. Dense composites with low porosity were obtained. The SiC grain size changes with the type of carbon. For pyrolyzed resin and graphite, the grain size is 2 µm, but for diamond it is 0.5 µm. Moreover, the thermal conductivity (TC) and densification of the composites were simultaneously investigated. The TC increases with increasing diamond particle size, surface roughness of diamond, and SiC content. The TC is highest (518 W/mK) for a diamond particle size of 110 µm, 50% volume fraction crushed diamond, 35% SiC, and 1650 °C. It also increases with increasing infiltration temperature from 1550 to 1650 °C. However, for an infiltration temperature of 1700 °C, it significantly decreases because the high infiltration temperature causes significant graphitization of diamond and increases the interfacial thermal resistance. For diamond volume fraction of less than 30%, the measured TC values agree with those predicted by the Hasselman–Johnson (HJ) model. However, when the volume fraction of the diamond is above 30%, it agrees with the combined action of the HJ and Agari models. Densification of the diamond/SiC composite is a mass transport process that includes two stages: formation of SiC and deposition of silicon vapor.

Notes

Acknowledgements

This research was financially supported by the National Key R&D Program of China (2016YFB0301402 and 2016YFB0301400) and the National Natural Science Foundation of China (Grant No. 51274040).

References

  1. 1.
    G.A. Voronin, T.W. Zerda, J. Qian, Y. Zhao, D. He, S.N. Dub, Diamond–SiC nanocomposites sintered from a mixture of diamond and silicon nanopowders. Diam. Relat. Mater. 12, 1477–1481 (2003)ADSCrossRefGoogle Scholar
  2. 2.
    E.A. Ekimov, S. Gierlotka, E.L. Gromnitskaya, J.A. Kozubowski, B. Palosz. Mechanical Properties and Microstructure of Diamond–SiC Nanocomposites. Inorg. Mater. 38, 1117–1122 (2002)CrossRefGoogle Scholar
  3. 3.
    M. Shimono, S. Kume, HIP-Sintered Composites of C (Diamond)/SiC. J. Am. Ceram. Soc. 87, 752–755 (2004)CrossRefGoogle Scholar
  4. 4.
    A.S. Osipov, S. Nauyoks, T.W. Zerda, O.L. Zaporozhets, Rapid sintering of nano-diamond compacts. Diam. Relat. Mater. 18, 1061–1064 (2009)ADSCrossRefGoogle Scholar
  5. 5.
    P. Unifantowicz, S. Vaucher, M. Lewandowska, K.J. Kurzydlowski, Mechanism of SiC crystals growth on {100 and {111} diamond surfaces upon microwave heating. Mater. Charact. 61, 648–652 (2010)CrossRefGoogle Scholar
  6. 6.
    E.A. Ekimov, A.G. Gacriliuk, B. Palosz, S. Gierlotka, P. Dluzewski, High-pressure, high-temperature synthesis of SiC– diamond nanocrystalline ceramics. Appl. Phys. Lett. 77, 954–956 (2000)ADSCrossRefGoogle Scholar
  7. 7.
    G.A. Voronin, T.W. Zerda, J. Gubicza, T. Ungar, S.N. Dub, Properties of nanostructured diamond-silicon carbide composites sintered by high pressure infiltration technique. J. Mater. Res. 19, 2703–2707 (2004)ADSCrossRefGoogle Scholar
  8. 8.
    C. Pantea, A.G. Voronin, T.W. Zerda, J. Zhang, Y.H. Zhao, Y. Wang, T. Uchida. Diamond-silicon Reaction at High Pressure High Temperature Kinetics of SiC Formation (2018)Google Scholar
  9. 9.
    O. Ohtaka, M. Shimono, N. Ohnishi, H. Fukui, H. Takebe, H. Arima, T. Yamanka, T. Kikegawa, S. Kume, HIP production of a diamond/SiC composite and application to high-pressure anvils. Phys. Earth Planet. In. 143, 587–591 (2006)ADSGoogle Scholar
  10. 10.
    J.C. Margiotta, D. Zhang, D.C. Nagle, Microstructural evolution during silicon carbide (SiC) formation by liquid silicon infiltration using optical microscopy. Int. J. Refract. Met. H. 28, 191–197 (2010)CrossRefGoogle Scholar
  11. 11.
    O. Dezellus, S. Jacques, F. Hodaj, N. Eustathopoulos, Wetting and infiltration of carbon by liquid silicon. J. Mater. Sci. 40, 9–10 2307–2311 (2005)CrossRefGoogle Scholar
  12. 12.
    J.M. Qian, Z.H. Jin, X.W. Wang, Porous SiC ceramics fabricated by reactive infiltration of gaseous silicon into charcoal. Ceram. Int. 30, 947–951 (2004)CrossRefGoogle Scholar
  13. 13.
    E. Vogli, H. Sieber, P. Greil, Biomorphic SiC-ceramic prepared by Si-vapor phase infiltration of wood. J. Eur. Ceram. Soc. 22, 2663–2668 (2002)CrossRefGoogle Scholar
  14. 14.
    J.M. Qian, J.P. Wang, Z.H. Jin, Preparation and properties of porous microcellular SiC ceramics by reactive infiltration of Si vapor into carbonized basswood. Mater. Chem. Phys. 82, 648–653 (2003)CrossRefGoogle Scholar
  15. 15.
    K. Mlungwane, I. Sigalas, M. Herrmann, M. Rodríguez, The wetting behaviour and reaction kinetics in diamond–silicon carbide systems. Ceram. Int. 35, 2435–2441 (2009)CrossRefGoogle Scholar
  16. 16.
    Z. Yang, X. He, M. Wu, L. Zhang, A. Ma, R. Liu, H. Hu, Y. Zhang, X. Qu, Fabrication of diamond/sic composites by Si-vapor vacuum reactive infiltration. Ceram. Int. 39(3), 3399–3403 (2013)CrossRefGoogle Scholar
  17. 17.
    W.K. Rhim, K. Ohsaka, Thermophysical properties measurement of molten silicon by high-temperature electrostatic levitator: density, volume expansion, specific heat capacity, emissivity, surface tension and viscosity. J. Cryst. Growth 208, 313–321 (2000)ADSCrossRefGoogle Scholar
  18. 18.
    E.A. Ekimov, N.V. Suetin, A.F. Popovich, V.G. Ralchenko, Thermal conductivity of diamond composites sintered under high pressures. Diam. Relat. Mater. 17, 838–843 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    S. Kumar, A. Kumar, A. Shukla, G.R. Devi, A.K. Gupta, Thermal-diffusivity measurement of 3D-stitched C–SiC composites. J. Eur. Ceram. Soc. 29, 489–495 (2009)CrossRefGoogle Scholar
  20. 20.
    C. Zhu, J. Lang, N. Ma, Preparation of Si–diamond–SiC composites by in-situ reactive sintering and their thermal properties. Ceram. Int. 38, 6131–6136 (2012)CrossRefGoogle Scholar
  21. 21.
    A.G. Every, Y. Tzou, D. Hasselman, R. Raj, The effect of particle size on the thermal conductivity of ZnS/diamond composites. Acta. Mater. 40, 123–129 (1992)CrossRefGoogle Scholar
  22. 22.
    J.F. Lynch, D.P.H. Hasselman, Effective thermal conductivity of composites with interfacial thermal barrier resistance. J. Compos. Mater. 21, 508–515 (1986)Google Scholar
  23. 23.
    Y. Agari, A. Ueda, S. Nagai, Thermal conductivities of composites in several types of dispersion systems. J. Appl. Polym. Sci. 42, 1665–1669 (1991)CrossRefGoogle Scholar
  24. 24.
    Y. Agari, T. Uno, Estimation on thermal conductivities of filled polymers. J. Appl. Polym. Sci. 32, 5705–5712 (2010)CrossRefGoogle Scholar
  25. 25.
    C. Pantea, G.A. Voronin, T.W. Zerda, J. Zhang, L. Wang, Y. Wang, T. Uchida, Y. Zhao, Kinetics of SiC formation during high P–T reaction between diamond and silicon. Diam. Relat. Mater. 14, 1611–1615 (2005)ADSCrossRefGoogle Scholar
  26. 26.
    J.S. Park, R. Sinclair, D. Rowcliffe, M. Stern, H. Davidson, Fib and tem studies of interface structure in diamond–sic composites. J. Mater. Sci. 41(14), 4611–4616 (2006)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringUniversity of Science & Technology BeijingBeijingPeople’s Republic of China
  2. 2.College of Aerospace and Materials EngineeringNational University of Defense TechnologyChangshaPeople’s Republic of China

Personalised recommendations