Advertisement

Applied Physics A

, 124:807 | Cite as

Luminescent diamond window of the sandwich type for X-ray visualization

  • Alexander V. Osadchy
  • Igor I. Vlasov
  • Oleg S. Kudryavtsev
  • Vadim S. Sedov
  • Victor G. Ralchenko
  • Sergey H. Batygov
  • Valery V. Savin
  • Petr A. Ershov
  • Victorya A. Chaika
  • Anton S. Narikovich
  • Vitaly I. Konov
Article
  • 79 Downloads

Abstract

A two-layered diamond plate is proposed as a transparent X-ray window visualizer. The plate consists of a thick substrate of a synthetic single-crystal high-pressure high-temperature (HPHT) diamond on which a thin \({\sim }10\, {\mu }m\) optically active layer of chemical vapor deposition (CVD) diamond doped with silicon and nitrogen, and is epitaxially grown. The photoluminescent properties of the diamond sandwich plate were studied under the influence of X-ray radiation before and after treatment of the plate with high-energy electrons and its thermal annealing. It was established that broadband luminescence with a maximum near 500 nm, associated with defects of the HPHT diamond substrate, dominates before electron treatment. The electron irradiation and subsequent annealing of the plate completely suppressed the broadband luminescence and significantly (by more than two orders of magnitude) increased emission intensity of nitrogen-vacancy centers (NV) in the CVD diamond layer. As a result, the luminescence of neutrally charged NV centers with a zero-phonon line at 575 nm became dominant. No luminescence of the silicon-vacancy (SiV) centers in the CVD diamond film was detected. The first results demonstrating the two-layered diamond plate as an X-ray visualizer are presented.

Notes

Acknowledgements

This work was supported by Russian Science Foundation, Grant no. 14-22-00243.

References

  1. 1.
    A. M. Zaitsev, Optical Properties of a Diamond (Springer, Berlin, 2001), p. 502.  https://doi.org/10.1007/978-3-662-04548-0
  2. 2.
    J.M. Taylor, P. Cappellaro, L. Childress, L. Jiang, D. Budker, P.R. Hemmer, A. Yacoby, R. Walsworth, M.D. Lukin, Nat. Phys. 4, 810–6 (2008)CrossRefGoogle Scholar
  3. 3.
    G. Balasubramanian et al., Nature 455, 648–51 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    G. Kucsko, P.C. Maurer, N.Y. Yao, M. Kubo, H.J. Noh, P.K. Lo, H. Park, M.D. Lukin, Nature 500, 54–8 (2013)ADSCrossRefGoogle Scholar
  5. 5.
    V.A. Shershulin, S.R. Samoylenko, V.S. Sedov et al., Laser Phys. Lett. 14, 026003 (2017)ADSCrossRefGoogle Scholar
  6. 6.
    A. Lakshmanan, Luminescence and display phosphors: phenomena and applications (Nova Science Publishers, Hauppauge, 2008), p. 205Google Scholar
  7. 7.
    M. Degenhardt, G. Aprigliano, H. Schulte-Schrepping, U. Hahn, H.J. Grabosch, E. Wrner, J. Phys.: Conf. Ser. 425, 192022 (2013)Google Scholar
  8. 8.
    T. Kudo, S. Takahashi, N. Nariyama, T. Hirono, T. Tachibana, H. Kitamura, Rev. Sci. Instrum. 77, 123105 (2006)ADSCrossRefGoogle Scholar
  9. 9.
    Yuri V. Shvydko, Stanislav Stoupin, Alessandro Cunsolo, Ayman H. Said, Xianrong Huang, Nat. Phys. 6, 196 (2010)CrossRefGoogle Scholar
  10. 10.
    U. D’Haenens-Johansson, A. Katrusha,K. S. Moe, P. Johnson,W. Wang, Gems and Gemology, Fall 2015, 51, 260 (2015)Google Scholar
  11. 11.
    A. Tallaire, J. Achard, F. Silva, O. Brinza, A. Gicquel, C. R. Phys. 14, 169184 (2013)CrossRefGoogle Scholar
  12. 12.
    A. Bolshakov, V. Ralchenko, V. Sedov, V. Khomich, I. Vlasov et al., Phys. Status Solidi A 212, 2525–2532 (2015)ADSCrossRefGoogle Scholar
  13. 13.
    G. Davies, M.F. Hamer, R. Proc, A. Soc, Proc. R. Soc. A Math. Phys. Eng. Sci. 348, 285 (1976)ADSCrossRefGoogle Scholar
  14. 14.
    Y. Mita, Phys. Rev. B 53, 11360 (1996)ADSCrossRefGoogle Scholar
  15. 15.
    J.P. Goss, R. Jones, S.J. Breuer, P.R. Briddon, S. Oberg, Phys. Rev. Lett. 77, 3041 (1996)ADSCrossRefGoogle Scholar
  16. 16.
    G. Davies, J. Phys C: Solid State Phys. 5, 2534 (1972)ADSCrossRefGoogle Scholar
  17. 17.
    N.B. Manson, J.P. Harrison, Diamond Relat. Mater. 14, 1705–10 (2005)ADSCrossRefGoogle Scholar
  18. 18.
    K. Iakoubovskii, G.J. Adriaenssens, M. Nesladek, J. Phys. CondensedMatter 12, 189 (2000)ADSCrossRefGoogle Scholar
  19. 19.
    A.A. Khomich, O.S. Kudryavtsev, A.P. Bolshakov et al., J. Appl. Spectrosc. 82, 242–247 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    A.M. Edmonds, M.E. Newton, P.M. Martineau, D.J. Twitchen, S.D. Williams, Phys. Rev. B 77, 245205 (2008)ADSCrossRefGoogle Scholar
  21. 21.
    V.A. Shershulin, S.R. Samoylenko, O.S. Kudryavtsev, A.P. Bolshakov, E.E. Ashkinazi, VYu. Yurov, V.G. Ralchenko, V.I. Konov, I.I. Vlasov, Laser Phys. 26, 015202 (2016)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Alexander V. Osadchy
    • 1
    • 2
  • Igor I. Vlasov
    • 1
    • 2
  • Oleg S. Kudryavtsev
    • 1
    • 2
  • Vadim S. Sedov
    • 1
  • Victor G. Ralchenko
    • 1
    • 2
  • Sergey H. Batygov
    • 1
  • Valery V. Savin
    • 3
  • Petr A. Ershov
    • 3
  • Victorya A. Chaika
    • 3
  • Anton S. Narikovich
    • 3
  • Vitaly I. Konov
    • 1
    • 2
  1. 1.Prokhorov General Physics Institute of the Russian Academy of SciencesMoscowRussia
  2. 2.National Research Nuclear University MEPhIMoscowRussia
  3. 3.Immanuel Kant Baltic Federal UniversityKaliningradRussia

Personalised recommendations