Advertisement

Applied Physics A

, 124:812 | Cite as

A comprehensive comparison of transition metal oxide MoO3 and non-transition metal oxide GeO2 in solar cells

  • Mei-Feng Xu
  • Zhi-Chun Zhai
  • Tian Xu
  • Chao-Nan Wang
  • Jing-Huai Fang
  • Yong-Long Jin
  • Xiao-Hua YangEmail author
Article
  • 37 Downloads

Abstract

Solution-processed metal oxide materials including transition metal oxide MoO3 and non-transition metal oxide GeO2 have been studied systematically here and they are directly dissolved in the deionized water. Aqueous solution-processed metal oxide material films are proposed utilizing the weak solubility in water. Solution-processed transition metal oxide MoO3 and non-transition metal oxide GeO2-based devices both showed the desired photovoltaic performance. Most importantly, non-transition metal oxide GeO2 was a highly promising interface layer for solar cells. Our results demonstrate the significant role of interfaces in improving the conditions of relaxation time and electron–hole pairs. Such GeO2-based devices exhibit an average energy conversion efficiency of 7.78% (the best is 8.16%), which is even higher than the device with the commonly used MoO3 as hole extraction layer (7.51%). Our results demonstrate the significant role of interfaces in improving the photovoltaic performance.

Notes

Acknowledgements

We acknowledge the financial support from the National Natural Science Foundation of China (Nos. 61701261, 61601249 and 61371057), the Natural Science Foundation of colleges and universities in Jiangsu Province (No. 06030015), the Natural Science Foundation of Jiangsu Province (No. BK20160417), the Foundation of Nan Tong University (No. 03081016), and the student innovation and entrepreneurship training program of Nan Tong University (Nos. 2018032, 2018041).

References

  1. 1.
    Y. Ohori, S. Fujii, H. Kataura, Y. Nishioka, Jpn. J. Appl. Phys. 54, 04DK09 (2015)CrossRefGoogle Scholar
  2. 2.
    C.B. Nielsen, S. Holliday, H.Y. Chen, S.J. Cryer, I. Mcculloch, Acc. Chem. Res. 48, 2803–2812 (2015)CrossRefGoogle Scholar
  3. 3.
    Y.H. Lou, Z.K. Wang, D.X. Yuan, H. Okada, L.S. Liao, Appl. Phys. Lett. 105, 143–141 (2014)Google Scholar
  4. 4.
    H. Ohkita, S. Ito, Polymer 52, 4397–4417 (2011)CrossRefGoogle Scholar
  5. 5.
    M.M. Makhlouf, H.M. Zeyada, Solid State Electron. 105, 51–57 (2015)ADSCrossRefGoogle Scholar
  6. 6.
    S.R. Forrest, V. Bulovic, P. Peumans, (Princeton, NJ, US, 2005), p. 6844025Google Scholar
  7. 7.
    W. Zhao, D. Qian, S. Zhang, S. Li, O. Inganäs, F. Gao, J. Hou, Adv. Mater. 28, 4734 (2016)CrossRefGoogle Scholar
  8. 8.
    H. Bin, L. Gao, Z.G. Zhang, Y. Yang, Y. Zhang, C. Zhang, S. Chen, L. Xue, C. Yang, M. Xiao, Nat. Commun. 7, 13651 (2016)ADSCrossRefGoogle Scholar
  9. 9.
    S.O. Oseni, G.T. Mola, Solar Energy Mater. Solar Cells 160, 241–256 (2017)CrossRefGoogle Scholar
  10. 10.
    T. Akiyama, T. Nishida, T. Matsumoto, H. Sakaguchi, A. Suzuki, T. Oku, Phys. Status Solidi 211, 1645–1650 (2014)ADSCrossRefGoogle Scholar
  11. 11.
    S.Y. Chiam, B. Dasgupta, D. Soler, M.Y. Leung, H. Liu, Z.E. Ooi, L.M. Wong, C.Y. Jiang, K.L. Chang, J. Zhang, Solar Energy Mater. Solar Cells 99, 197–203 (2012)CrossRefGoogle Scholar
  12. 12.
    R. Nie, A. Li, X. Deng, J. Mater. Chem. A 2, 6734–6739 (2014)CrossRefGoogle Scholar
  13. 13.
    D. Geetha, P.S. Ramesh, Mater. Today Proc. 4, 4319–4328 (2017)CrossRefGoogle Scholar
  14. 14.
    K. Schulze, B. Maennig, K. Leo, Y. Tomita, Appl. Phys. Lett. 91, 07352–073523 (2007)CrossRefGoogle Scholar
  15. 15.
    T. Wahl, S. Zellmer, J. Hanisch, G. Garnweitner, E. Ahlswede, Thin Solid Films 616, 419–424 (2016)ADSCrossRefGoogle Scholar
  16. 16.
    J. Meiss, C. Falkenberg, K. Leo, M. Riede, Proc Spie 7416, 285–300 (2009)Google Scholar
  17. 17.
    B. Li, H. Ren, H. Yuan, A. Karim, X. Gong, Acs Photonics 1, 87–90 (2014)CrossRefGoogle Scholar
  18. 18.
    T. Stubhan, N. Li, N.A. Luechinger, S.C. Halim, G.J. Matt, C.J. Brabec, Adv. Energy Mater. 2, 1433–1438 (2012)CrossRefGoogle Scholar
  19. 19.
    W. Kim, J.K. Kim, Y. Lim, I. Park, Y.S. Choi, J.H. Park, Solar Energy Mater. Solar Cells 122, 24–30 (2014)CrossRefGoogle Scholar
  20. 20.
    S. Chen, J.R. Manders, S.W. Tsang, F. So, J. Mater. Chem. 22, 24202–24212 (2012)CrossRefGoogle Scholar
  21. 21.
    X. Huang, G. Zhao, G. Wang, Y. Tang, Z. Shi, Microporous Mesoporous Mater. 207, 105–110 (2015)CrossRefGoogle Scholar
  22. 22.
    M.-F. Xu, L.-S. Cui, X.-Z. Zhu, C.-H. Gao, X.-B. Shi, Z.-M. Jin, Z.-K. Wang, L.-S. Liao, Org. Electron. 14, 657–664 (2013)CrossRefGoogle Scholar
  23. 23.
    M.-F. Xu, X.-B. Shi, Z.-M. Jin, F.-S. Zu, Y. Liu, L. Zhang, Z.-K. Wang, L.-S. Liao, ACS Appl. Mater. Interfaces 5, 10866–10873 (2013)CrossRefGoogle Scholar
  24. 24.
    G.S. Pokrovski, J. Schott, Geochim. Cosmochim. Acta 62, 1631–1642 (1998)ADSCrossRefGoogle Scholar
  25. 25.
    O.S. Pokrovsky, G.S. Pokrovski, J. Schott, A. Galy, Geochim. Cosmochim. Acta 70, 3325–3341 (2006)ADSCrossRefGoogle Scholar
  26. 26.
    A.A. Sibirkin, O.A. Zamyatin, E.V. Torokhova, M.F. Churbanov, A.I. Suchkov, A.N. Moiseev, Inorg. Mater. 47, 1214–1217 (2011)CrossRefGoogle Scholar
  27. 27.
    B.J. Leever, C.A. Bailey, T.J. Marks, M.C. Hersam, M.F. Durstock, Adv. Energy Mater. 2, 120–128 (2012)CrossRefGoogle Scholar
  28. 28.
    R. Pethig, D.B. Kell, Phys. Med. Biol. 32, 933–970 (1987)CrossRefGoogle Scholar
  29. 29.
    C. Tong, L. Shen, Y. Lv, Z. Wang, X. Wang, S. Feng, X. Li, Y. Sui, X. Pang, R. Wu, Brief. Bioinform. 15, 43–53 (2014)CrossRefGoogle Scholar
  30. 30.
    I.V. Lebedev, Opt. Spectrosc. 77, 212–214 (1994)ADSGoogle Scholar
  31. 31.
    J.F. Salinas, H.L. Yip, C.C. Chueh, C.Z. Li, J.L. Maldonado, A.K. Jen, Adv. Mater. 24, 6362–6367 (2012)CrossRefGoogle Scholar
  32. 32.
    J. Liu, S. Shao, G. Fang, B. Meng, Z. Xie, L. Wang, Adv. Mater. 24, 2774–2779 (2012)CrossRefGoogle Scholar
  33. 33.
    H. Hänsel, H. Zettl, G. Krausch, R. Kisselev, M. Thelakkat, H.W. Schmidt, Adv. Mater. 15, 2056–2060 (2003)CrossRefGoogle Scholar
  34. 34.
    H. Jin, C. Tao, M. Velusamy, M. Aljada, Y. Zhang, M. Hambsch, P.L. Burn, P. Meredith, Adv. Mater. 24, 2572 (2012)CrossRefGoogle Scholar
  35. 35.
    T. Stübinger, W. Brütting, J. Appl. Phys. 90, 3632–3641 (2001)ADSCrossRefGoogle Scholar
  36. 36.
    R.D. Bringans, M.A. Olmstead, R.I. Uhrberg, R.Z. Bachrach, Phys. Rev. B Condens. Matter 36, 9569 (1987)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Mei-Feng Xu
    • 1
  • Zhi-Chun Zhai
    • 2
  • Tian Xu
    • 1
  • Chao-Nan Wang
    • 1
  • Jing-Huai Fang
    • 1
  • Yong-Long Jin
    • 1
  • Xiao-Hua Yang
    • 1
    Email author
  1. 1.Nantong UniversityNantongChina
  2. 2.Nantong Institute of TechnologyNantongChina

Personalised recommendations