Advertisement

Applied Physics A

, 124:819 | Cite as

A study on thermal degradation of zinc oxide nanopowders functionalized with anthocyanins, in correlation with their properties and applications

  • Anca Dumbrava
  • Daniela Berger
  • Gabriel Prodan
  • Mihaela Badea
  • Rodica Olar
  • Florin Moscalu
  • Aurel Diacon
Article
  • 51 Downloads

Abstract

The variation of structural and optical properties during the thermal degradation of ZnO nanoparticles functionalized with anthocyanins was evidenced through thermal analysis, X-ray diffraction, transmission electron microscopy, electron diffraction, UV–Vis and photoluminescence spectroscopy. A detailed structural study of the particles (cell parameters, lattice strain, and crystallite size) was performed based on the electron diffraction data. The structure and properties were correlated with photocatalytic activity in the degradation of Congo red dye. A higher calcination temperature was associated with lower photocatalytic activity, due to a higher crystallinity. Unusual photoluminescence properties compared to pristine ZnO have been observed.

Notes

Acknowledgements

This work has been performed in the frame of Project no. 91, JINR-RO 2018, topic number 04-4-1121-2015/2020, JINR 322/21.05.2018, Dubna, Russia.

References

  1. 1.
    S. Ahmed, S.A. Annu, S. Chaudhry, Ikram, J. Photochem. Photobiol. B 166, 272 (2017).  https://doi.org/10.1016/j.jphotobiol.2016.12.011 CrossRefGoogle Scholar
  2. 2.
    H. Morkoç, Ü Özgür, Zinc Oxide: Fundamentals, Materials and Device Technology (Wiley-VCH Verlag, Weinheim, 2009)CrossRefGoogle Scholar
  3. 3.
    H. Agarwal, S. Venkat Kumar, S. Rajeshkumar, Resour. Effic. Technol. 3, 406 (2017).  https://doi.org/10.1016/j.reffit.2017.03.002 CrossRefGoogle Scholar
  4. 4.
    H. Mirzaei, M. Darroudi, Ceram. Int. 43, 907 (2017).  https://doi.org/10.1016/j.ceramint.2016.10.051 CrossRefGoogle Scholar
  5. 5.
    G. Sangeetha, S. Rajeshwari, R. Venckatesh, Mater. Res. Bull. 46, 2560 (2011).  https://doi.org/10.1016/j.materresbull.2011.07.046 CrossRefGoogle Scholar
  6. 6.
    L. Zhang, A. Konno, Int. J. Electrochem. Sci. 13, 344 (2018).  https://doi.org/10.0964/2018.01.07 CrossRefGoogle Scholar
  7. 7.
    A.M. Golsheikh, K.Z. Kamali, N.M. Huang, A.K. Zak, Powder Technol. 329, 282 (2017).  https://doi.org/10.1016/j.powtec.2017.11.065 CrossRefGoogle Scholar
  8. 8.
    A. Al-Kahlout, J. Assoc. Arab. Univ. Basic Appl. Sci. 17, 66 (2015).  https://doi.org/10.1016/j.jaubas.2014.02.004 CrossRefGoogle Scholar
  9. 9.
    A.M. Pourrahimi, D. Liu, V. Strom, M.S. Hedenqvist, R.T. Olsson, U.W. Gedde, J. Mater. Chem. A 3, 17190 (2015).  https://doi.org/10.1039/c5ta03120f CrossRefGoogle Scholar
  10. 10.
    G.M. Ali, P. Chakrabarti, Appl. Phys. Lett. 97, e031116 (2010).  https://doi.org/10.1063/1.3467204 ADSCrossRefGoogle Scholar
  11. 11.
    W. Khan, F. Khan, H.M.S. Ajmal, N.U. Huda, J.H. Kim, S.D. Kim, Nanomaterials 8, 68 (2018).  https://doi.org/10.3390/nano8020068 CrossRefGoogle Scholar
  12. 12.
    N.M. Al-Hada, E.B. Saion, A.H. Shaari, M.A. Kamarudin, M.H. Flaifel, S.H. Ahmad, S.A. Gene, PLoS One 9, e103134 (2014).  https://doi.org/10.1371/journal.pone.0103134 ADSCrossRefGoogle Scholar
  13. 13.
    P.J. Lee, E. Saion, N.M. Al-Hada, N. Soltani, Metals 5, 2383 (2015).  https://doi.org/10.3390/met5042383 CrossRefGoogle Scholar
  14. 14.
    J. Wang, S. Zhang, J. You, H. Yan, Z. Li, X. Jing, M. Zhang, Bull. Mater. Sci. 31, 597 (2008)CrossRefGoogle Scholar
  15. 15.
    U. Manzoor, F.T. Zahra, S. Rafique, M.T. Moin, M. Mujahid, J. Nanomater. 2015, e189058 (2015).  https://doi.org/10.1155/2015/189058 CrossRefGoogle Scholar
  16. 16.
    A.K. Zak, W.H. Abd. M.E. Majid, R. Abrishami, Yousefi, X-ray analysis of ZnO nanoparticles by Williamson-Hall and size-strain plot methods. Solid State Sci. 13, 251 (2011).  https://doi.org/10.1016/j.solidstatesciences.2010.11.024 ADSCrossRefGoogle Scholar
  17. 17.
    V.D. Mote, Y. Purushotham, B.N. Dole, J. Theor. Appl. Phys. 6, 6 (2012).  https://doi.org/10.1186/2251-7235-6-6 ADSCrossRefGoogle Scholar
  18. 18.
    A. Dumbrava, D. Berger, G. Prodan, C. Matei, F. Moscalu, A. Diacon, ECS J. Solid State Sci. Technol. 6, P870 (2017).  https://doi.org/10.1149/2.0311712jss CrossRefGoogle Scholar
  19. 19.
    M.R. Parra, F.Z. Haque, J. Mater. Res. Technol. 3, 363 (2014).  https://doi.org/10.1016/j.jmrt.2014.07.001 CrossRefGoogle Scholar
  20. 20.
    Z.N. Kayani, F. Saleemi, I. Batool, Appl. Phys. A 119, 713 (2015).  https://doi.org/10.1007/s00339-015-9019-1 ADSCrossRefGoogle Scholar
  21. 21.
    S. Bai, J. Hu, D. Li, R. Luo, A. Chen, C.C. Liu, IEEE Sens. J. 12, 1122 (2012).  https://doi.org/10.1109/JSEN.2011.2166152 ADSCrossRefGoogle Scholar
  22. 22.
    A. Dumbrava, D. Berger, G. Prodan, F. Moscalu, Chalcogenide Lett. 13, 105 (2016)Google Scholar
  23. 23.
    A. Dumbrava, D. Berger, G. Prodan, F. Moscalu, A. Diacon, Mater. Chem. Phys. 173, 70 (2016).  https://doi.org/10.1016/j.matchemphys.2016.01.040 CrossRefGoogle Scholar
  24. 24.
    A. Dumbrava, G. Prodan, D. Berger, M. Bica, Powder Technol. 270, 197 (2015).  https://doi.org/10.1016/j.powtec.2014.10.012 CrossRefGoogle Scholar
  25. 25.
    M.E. Brown, Handbook of Thermal Analysis and Calorimetry, vol. 1, Principles and Practice, p. 172 (Elsevier, Amsterdam, 1998) (206, 262) Google Scholar
  26. 26.
    J. Li, J. Sun, Acc. Chem. Res. 50, 2737 (2017).  https://doi.org/10.1021/acs.accounts.7b00366 CrossRefGoogle Scholar
  27. 27.
    A. Dumbrava, G. Prodan, A. Georgescu, F. Moscalu, Bull. Mater. Sci. 38, 1 (2015).  https://doi.org/10.1007/s12034-014-0793-8 CrossRefGoogle Scholar
  28. 28.
  29. 29.
    Y.T. Prabhu, K.V. Rao, V.S.S. Kumar, B.S. Kumari, World J. Nano Sci. Eng. 4, 21 (2014).  https://doi.org/10.4236/wjnse.2014.41004 ADSCrossRefGoogle Scholar
  30. 30.
    H. Borchert, E.V. Shevchenko, A. Robert, I. Mekis, A. Kornowski, G. Grubel, H. Weller, Langmuir 21, 1931 (2005)CrossRefGoogle Scholar
  31. 31.
    T.M.K. Thandavan, S.M.A. Gani, C.S. Wong, R.M. Nor, J. Nondestruct. Eval. 34, 14 (2015).  https://doi.org/10.1007/s10921-015-0286-8 CrossRefGoogle Scholar
  32. 32.
    J.I. Langford, J. Appl. Cryst. 6, 190 (1973).  https://doi.org/10.1107/S0021889873008460 CrossRefGoogle Scholar
  33. 33.
  34. 34.
    A.K. Zak, W.H.A. Majid, M.E. Abrishami, R. Yousefi, Solid State Sci. 13, 251 (2011).  https://doi.org/10.1016/j.solidstatesciences.2010.11.024 ADSCrossRefGoogle Scholar
  35. 35.
    M.M. Mikhailov, V.V. Neshchimenko, C. Li, S. He, D. Yang, J. Mater. Res. 24, 19 (2009).  https://doi.org/10.1557/JMR.2009.0033 ADSCrossRefGoogle Scholar
  36. 36.
    J. Iqbal, B. Wang, X. Liu, D. Yu, B. He, R. Yu, New J. Phys. 11, 063009 (2009).  https://doi.org/10.1088/1367-2630/11/6/063009 ADSCrossRefGoogle Scholar
  37. 37.
    J. Tauc, R. Grigorovici, A. Vancu, Phys. Status Solidi B 15, 627 (1966).  https://doi.org/10.1002/pssb.19660150224 ADSCrossRefGoogle Scholar
  38. 38.
    A. Dumbrava, D. Berger, G. Prodan, F. Moscalu, A. Diacon, Z. Phys. Chem. 232, 61 (2018).  https://doi.org/10.1515/zpch-2017-0005 CrossRefGoogle Scholar
  39. 39.
    A. Gupta, S.S. Pandey, M. Nayak, A. Maity, S.B. Majumderb, S. Bhattacharya, RSC Adv. 4, 7476 (2014).  https://doi.org/10.1039/C3RA45316B CrossRefGoogle Scholar
  40. 40.
    V. Srikant, D.R. Clarkea, J. Appl. Phys. 83, 5447 (1998).  https://doi.org/10.1063/1.367375 ADSCrossRefGoogle Scholar
  41. 41.
    L.I. Berger, Semiconductor Materials (CRC Press, Boca Raton, 1997)Google Scholar
  42. 42.
    X.W. Sun, H.S. Kwok, J. Appl. Phys. 86, 408 (1999).  https://doi.org/10.1063/1.370744 ADSCrossRefGoogle Scholar
  43. 43.
    S. Kakarndee, S. Juabrum, S. Nanan, Mater. Lett. 164, 198 (2016).  https://doi.org/10.1016/j.matlet.2015.10.154 CrossRefGoogle Scholar
  44. 44.
    C. Bekeny, T. Voss, H. Gafsi, J. Gutowski, B. Postels, M. Kreye, A. Waag, J. Appl. Phys. 100, 104317 (2006).  https://doi.org/10.1063/1.2390548 ADSCrossRefGoogle Scholar
  45. 45.
    T. Singh, T. Lehnen, T. Leuning, D. Sahu, S. Mathur, Appl. Surf. Sci. 289, 27 (2014).  https://doi.org/10.1016/j.apsusc.2013.10.071 ADSCrossRefGoogle Scholar
  46. 46.
    M. Gerigk, P. Ehrenreich, M.R. Wagner, I. Wimmer, J.S. Reparaz, C.M.S. Torres, L. Schmidt-Mendea, S. Polarz, Nanoscale 7, 16969 (2015)ADSCrossRefGoogle Scholar
  47. 47.
    B. Liu, X. Zhao, C. Terashima, A. Fujishima, K. Nakata, Phys. Chem. Chem. Phys. 16, 8751 (2014).  https://doi.org/10.1039/c3cp55317e CrossRefGoogle Scholar
  48. 48.
    G.C. Park, T.Y. Seo, C.H. Park, J.H. Lim, J. Joo, Ind. Eng. Chem. Res. 56, 8235 (2017).  https://doi.org/10.1021/acs.iecr.7b01920 CrossRefGoogle Scholar
  49. 49.
    N. Kumaresan, K. Ramamurthi, R. Ramesh Babu, K. Sethuraman, S. Moorthy Babu, Appl. Surf. Sci. 418, 138 (2017).  https://doi.org/10.1016/j.apsusc.2016.12.231 ADSCrossRefGoogle Scholar
  50. 50.
    R.M. Thankachan, N. Joy, J. Abraham, N. Kalarikkal, S. Thomas, O.S. Oluwafemi, Mater. Res. Bull. 85, 131 (2017).  https://doi.org/10.1016/j.materresbull.2016.09.009 CrossRefGoogle Scholar
  51. 51.
    N. Jain, A. Bhargava, J. Panwar, Chem. Eng. J. 243, 549 (2014).  https://doi.org/10.1016/j.cej.2013.11.085 CrossRefGoogle Scholar
  52. 52.
    A. Nageswara Rao, B. Sivasankar, V. Sadasivam, J. Hazard. Mater. 166, 1357 (2009).  https://doi.org/10.1016/j.jhazmat.2008.12.051 CrossRefGoogle Scholar
  53. 53.
    I.K. Konstantinou, T.A. Albanis, Appl. Catal. B Environ. 42, 319 (2003)CrossRefGoogle Scholar
  54. 54.
    H. Lachheb, E. Puzenat, A. Houas, M. Ksibi, E. Elaloui, C. Guillard, J.M. Herrmann, Appl. Catal. B Environ. 39, 75 (2002).  https://doi.org/10.1016/S0926-3373(02)00078-4 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemistry and Chemical EngineeringOvidius University of ConstantaConstanţaRomania
  2. 2.Department of Inorganic Chemistry, Physical Chemistry and ElectrochemistryUniversity Politehnica of BucharestBucharestRomania
  3. 3.Electron Microscopy LaboratoryOvidius University of ConstantaConstanţaRomania
  4. 4.Department of Inorganic Chemistry, Faculty of ChemistryUniversity of BucharestBucharestRomania
  5. 5.Department of PhysicsOvidius University of ConstantaConstanţaRomania
  6. 6.Department of Bioresources and Polymer ScienceUniversity Politehnica of BucharestBucharestRomania

Personalised recommendations