Applied Physics A

, 124:806 | Cite as

Analysis of the low-temperature dielectric relaxation in \(\hbox {CH}_{3}\hbox {NH}_{3}\hbox {PbI}_{3}\) partially substituted with Sn and Ba

  • Jintara Padchasri
  • Saroj Rujirawat
  • Rattikorn Yimnirun
  • Taras KolodiazhnyiEmail author


In this work, we partially replaced Pb with non-toxic elements to form hybrid perovskites \(\hbox {CH}_{3}\hbox {NH}_{3} \hbox {Pb}_{0.9}\hbox {M}_{0.1}\hbox {I}_{3}\), where \(\hbox {M} = \hbox {Sn}^{2+}\) and \(\hbox {Ba}^{2+}\) and studied their dielectric properties. According to room-temperature Rietveld analysis, all compositions with 10 % substitution were tetragonal with a space group \(I4/\hbox {mcm}\). A notable dielectric relaxation was detected at \(T\sim 60\)\(100\hbox { K}\), far below the orthorhombic-to-tetragonal phase transition at \(T\sim 155\hbox { K}\). To clarify the conflicting literature reports, the dielectric relaxation was fitted to both Arrhenius and Vogel–Fulcher models and showed no indication of the finite (i.e. non-zero) dipolar freezing temperature. It is concluded, therefore, that the low-T dielectric dispersion is a signature of the Debye-type thermally activated re-orientation of the non-interacting electric dipoles with an activation energy of \(E_\mathrm{{a}} \sim 123-171\hbox { meV}\).



J.P. was financially supported by Science Achievement Scholarship of Thailand (SAST) for PhD scholarship and internal NIMS Grant PA4020.


  1. 1.
    D.B. Mitzi, Progr. Inorg. Chem. 48, 1–121 (1999)Google Scholar
  2. 2.
    D. Weber, Z. Naturforsch 33b, 1443–1445 (1978)ADSCrossRefGoogle Scholar
  3. 3.
    H. Gary, Science 342, 317–318 (2013)CrossRefGoogle Scholar
  4. 4.
    A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 131, 60506051 (2009)Google Scholar
  5. 5.
    T. Chen, B.J. Foley, B. Ipek, M. Tyagi, J.R.D. Copley, C.M. Brown, J.J. Choi, S.-H. Lee, Phys. Chem. Chem. Phys. 17, 31278 (2015)CrossRefGoogle Scholar
  6. 6.
    C. Wehrenfennig, G.E. Eperon, M.B. Johnston, H.J. Snaith, L.M. Herz, Adv. Mater. 26, 1584–1589 (2014)CrossRefGoogle Scholar
  7. 7.
    L.M. Herz, ACS Energy Lett. 2, 1539–1548 (2017)CrossRefGoogle Scholar
  8. 8.
    S. Liu, F. Zheng, N.Z. Koocher, H. Takenaka, F. Wang, A.M. Rappe, J. Phys. Chem. Lett. 6, 693699 (2015)Google Scholar
  9. 9.
    F. Cordero, F. Craciun, F. Trequattrini, P. Imperatori, A.M. Paoletti, G. Pennesi, J. Phys. Chem. Lett. 9, 44014406 (2018)CrossRefGoogle Scholar
  10. 10.
    Z.-G. Yu, J. Phys. Chem. Lett. 7, 30783083 (2016)Google Scholar
  11. 11.
    M. Sendner, P.K. Nayak, D.A. Egger, S. Beck, C. Müller, B. Epding, W. Kowalsky, L. Kronik, H.J. Snaith, A. Pucci, R. Lovrincic, Mater. Horiz. 3, 613 (2016)CrossRefGoogle Scholar
  12. 12.
    X.-Y. Zhu, V. Podzorov, J. Phys. Chem. Lett. 6, 47584761 (2015)Google Scholar
  13. 13.
    A.J. Neukirch, W. Nie, J.-C. Blancon, K. Appavoo, H. Tsai, M.Y. Sfeir, C. Katan, L. Pedesseau, J. Even, J.J. Crochet, G. Gupta, A.D. Mohite, S. Tretiak, Nano Lett. 16, 38093816 (2016)CrossRefGoogle Scholar
  14. 14.
    A. Buin, P. Pietsch, J. Xu, O. Voznyy, A.H. Ip, R. Comin, E.H. Sargent, Nano Lett. 14, 62816286 (2014)CrossRefGoogle Scholar
  15. 15.
    O. Bidault, M. Maglione, M. Actis, M. Kchikech, B. Scalce, Phys. Rev. B. 52, 4191–4197 (1995)ADSCrossRefGoogle Scholar
  16. 16.
    E. Iguchi, N. Kubota, T. Nakamori, N. Yamamoto, N.J. Lee, Phys. Rev. B. 43, 8646–8649 (1991)ADSCrossRefGoogle Scholar
  17. 17.
    E. Nakamura, J. Phys, Conden. Mater 7, 2205–2216 (1995)CrossRefGoogle Scholar
  18. 18.
    Y.N. Huang, X. Li, Y. Ding, Y.N. Wang, H.M. Shen, Z.F. Zhang, Phys. Rev. B. 55, 16159–16167 (1997)ADSCrossRefGoogle Scholar
  19. 19.
    F. Borsa, U.T. Hochli, V.D. Klink, D. Rytz, Phys. Rev. Lett. 45, 1884–1887 (1980)ADSCrossRefGoogle Scholar
  20. 20.
    A. Tkach, P.M. Vilarinho, A.L. Kholkin, A. Pashkin, S. Veljko, J. Petzelt, Phys. Rev. B. 73, 104113 (2006)ADSCrossRefGoogle Scholar
  21. 21.
    T. Kolodiazhnyi, J. Eur. Ceram. Soc. 34, 1741–1753 (2014)CrossRefGoogle Scholar
  22. 22.
    MdS Sheikh, A.P. Sakhya, A. Dutta, T.P. Sinha, Thin Solid Films 638, 277–281 (2017)ADSCrossRefGoogle Scholar
  23. 23.
    MdS Sheikh, A.P. Sakhya, P. Sadhukhan, A. Dutta, S. Das, T.P. Sinha, Ferroelectrics 514, 146–157 (2017)CrossRefGoogle Scholar
  24. 24.
    N. Onoda-Yamamuro, T. Matsuo, H. Suga, J. Phys. Chem. Solids 53, 935–939 (1992)ADSCrossRefGoogle Scholar
  25. 25.
    D.H. Fabini, T. Hogan, H.A. Evans, C.C. Stoumpos, M.G. Kanatzidis, R. Seshadri, J. Phys. Chem. Lett. 7, 376–381 (2016)CrossRefGoogle Scholar
  26. 26.
    G.A. Samara, J. Phys.: Condens. Matter. 15, R367R411 (2003)Google Scholar
  27. 27.
    J. Padchasri, R. Yimnirun, J. Alloys Compd. 720, 63–69 (2017)CrossRefGoogle Scholar
  28. 28.
    A. Poglitsch, D. Weber, J. Chem. Phys. 87, 6373–6378 (1987)ADSCrossRefGoogle Scholar
  29. 29.
    T. Oku, Solar cells-new approaches and reviews publisher: InTech, 77-101 (2015)Google Scholar
  30. 30.
    F. Hao, C.C. Stoumpos, D.H. Cao, R.P.H. Chang, M.G. Kanatzidis, Nat. Photon. 8, 489–494 (2014)ADSCrossRefGoogle Scholar
  31. 31.
    J. Navas, A. Sanchez-Coronilla, J.J. Gallardo, N.C. Hernandez, J.C. Pinero, R. Alcantara, C. Fernandez-Lorenzo, D.M. De los Santos, T. Aguilara, J. Martin-Calleja, Nanoscale 7, 6216–6229 (2015)ADSCrossRefGoogle Scholar
  32. 32.
    A. Pisoni, J. Jacimovic, B. Nafradi, P. Szirmai, M. Spina, R. Gaal, K. Holczer, E. Tutis, L. Forro, E. Horvath. arXiv:1604.05637 [cond-mat.str-el]

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Physics, Institute of Science, and NANOTEC-SUT COE on Advanced Functional NanomaterialsSuranaree University of TechnologyNakhon RatchasimaThailand
  2. 2.School of Energy Science and EngineeringVidyasirimedhi Institute of Science and Technology (VISTEC)RayongThailand
  3. 3.Research Network of NANOTEC-VISTEC on Nanotechnology for EnergyVidyasirimedhi Institute of Science and Technology (VISTEC)RayongThailand
  4. 4.National Institute for Materials ScienceTsukubaJapan

Personalised recommendations