Advertisement

Applied Physics A

, 124:803 | Cite as

Influence of Burstein–Moss effect on photoexcitation and heating of silicon by short and ultrashort laser pulses at wavelength 1.06 \(\upmu \mathrm{m}\)

  • Dmitry S. Polyakov
  • Evgeny B. Yakovlev
Article
  • 49 Downloads

Abstract

The theoretical research of the influence of Burstein–Moss effect (the effect of interband absorption saturation in semiconductors) on the processes of photoexcitation and heating of monocrystalline silicon under pulsed laser action with pulse durations in the range from hundreds of femtoseconds to hundreds of nanoseconds at the wavelength near the edge of interband absorption (1.06 \(\upmu\)m) was conducted. It was shown that interband absorption saturation effect has the largest impact for picosecond laser pulses. Taking this effect into account in the model presented in this work allows to bring calculated melting thresholds for silicon in accordance with experimental results for wide range of pulse durations. Also, the influence of the effect of band edges filling by carriers during electron–phonon relaxation on the absorption of the second pulse when irradiating using double-pulse femtosecond laser action technique was studied.

Notes

Acknowledgements

This work was supported by RFBR Grant #18-32-00839.

References

  1. 1.
    W. O’Neil, K. Li., IEEE J. Sel. Top. Quantum Electron., 15, 462 (2009)Google Scholar
  2. 2.
    K. Li, M. Sparkes, W. ONeil. IEEE J. Sel. Top. Quantum Electron., 20, 900807 (2014)Google Scholar
  3. 3.
    P.C. Verburg, L.A. Smillie, G.R.B.E. Romer, B. Haberl, J.E. Bradby, J.S. Williams, A.J. Huis int Veld, Appl. Phys. A. 120, 683 (2015)Google Scholar
  4. 4.
    O. Haupt, F. Siegel, A. Schoonderbeek, L. Richter, R. Kling, A. Ostendorf, J. Laser Micro/Nanoeng. 3(3), 135 (2008)CrossRefGoogle Scholar
  5. 5.
    K. Venkatakrishnan, N. Sudani, B. Tan, J. Micromechanics. Microeng. 18, 075032 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    N. Mansour, K. Jamshidi-Ghaleh, D. Ashkenasi, J. Laser Micro/Nanoeng. 1(1), 12 (2006)CrossRefGoogle Scholar
  7. 7.
    D.S. Polyakov, E.B. Yakovlev, Opt. Quantum Electron. 50, 235 (2018)CrossRefGoogle Scholar
  8. 8.
    P.C. Verburg, G.R.B.E. Romer, A.J. Huis int Veld, Appl. Phys. A. 144(4), 1135 (2014)Google Scholar
  9. 9.
    W. Han, L. Jiang, X. Li, Q. Wang, H. Li, Y. Lu, Optics Express. 22(13), 15820 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    X. Zhao, Y.C. Shin, Appl. Phys. Lett. 105, 111907 (2014)ADSCrossRefGoogle Scholar
  11. 11.
    T. Derrien, J. Kruger, T.E. Itina, S. Hohm, A. Rosenfeld, J. Bonse Appl. Phys. A. 117, 77 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    T. Derrien, J. Kruger, T.E. Itina, S. Hohm, A. Rosenfeld, J. Bonse, Opt. Express 21(24), 29643 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    H.M. van Dreil, Phys. Rev. B. 35, 8166 (1987)ADSCrossRefGoogle Scholar
  14. 14.
    A. Ramer, B. Rethfeld, O. Osmani, J. Appl. Phys. 116, 053508 (2014)ADSCrossRefGoogle Scholar
  15. 15.
    Y. Levy, T. Derrien, N.M. Bulgakova, E. Gurevich, T. Mocek, Appl. Surf. Sci. 374, 157 (2016)ADSCrossRefGoogle Scholar
  16. 16.
    V.P. Lipp, B. Rethfeld, M.E. Garcia, D.S. Ivanov, Phys, Rev. B. 90, 245306 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    S.I. Ashitkov, A.V. Ovchinnikov, M.B. Agranat, JEPT Lett. 79, 529 (2004)ADSGoogle Scholar
  18. 18.
    I.A. Vainstein, A.F. Zatsepin, V.S. Kortov, Phys. Solid State. 41(6), 905 (1999)ADSCrossRefGoogle Scholar
  19. 19.
    K.F. Berggren, B.E. Sernelius, Phys. Rev. B 24(4), 1971 (1981)ADSCrossRefGoogle Scholar
  20. 20.
    D.S. Polyakov, E.B. Yakovlev, D.S. Ivanov, Tech. Phys. Lett. 43, 247 (2017)ADSCrossRefGoogle Scholar
  21. 21.
    S. Tao, Y. Zhou, J. Appl. Phys. 106, 123507 (2009)ADSCrossRefGoogle Scholar
  22. 22.
    H. Garcia, R. Kalyanaraman, J. Phys. B At. Mol. Opt. Phys. 39, 2737 (2006)Google Scholar
  23. 23.
    A.D. Bristow, N. Rotenberg, H.M. van Driel, Appl. Phys. Lett. 90, 191104 (2007)ADSCrossRefGoogle Scholar
  24. 24.
    D.S. Polyakov, E.B. Yakovlev, Quantum Electron. 48(3), 255 (2018)ADSCrossRefGoogle Scholar
  25. 25.
    K. Sokolowski-Tinten, D. von der Linde, Phys. Rev. B. 61, 2643–2650 (2000)ADSCrossRefGoogle Scholar
  26. 26.
    D.A. Zayarny, A.A. Ionin, S.I. Kudryashov, S.V. Makarov, A.A. Kuchmizhak, O.B. Vitrik, Y.N. Kulchin, JETP Lett. 103, 752 (2016)ADSCrossRefGoogle Scholar
  27. 27.
    I.W. Boyd, S.C. Moss, T.F. Bogaess, A.L. Smirl, Appl. Phys. Lett. 45(1), 80 (1984)ADSCrossRefGoogle Scholar
  28. 28.
    J.R. Meyer, M.R. Kruer, F.J. Bartoli, J. Appl. Phys. 51(10), 5513 (1980)ADSCrossRefGoogle Scholar
  29. 29.
    C. Ma, W.-Y. Ho, R. Walser, M. Becker, Proc. SPIE 1848, 59 (1992)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.ITMO UniversitySaint-PetersburgRussia

Personalised recommendations