Advertisement

Applied Physics A

, 124:842 | Cite as

Tailoring magnetic properties of Al-substituted M-type strontium hexaferrites

  • Yue Dai
  • Zhongwen Lan
  • Chuanjian Wu
  • Changlong Yang
  • Zhong Yu
  • Rongdi Guo
  • Wei Wang
  • Chuan Chen
  • Xin Liu
  • Xiaona Jiang
  • Ke SunEmail author
Article
  • 52 Downloads

Abstract

Ferrites which have relatively high remanence ratio, large coercivity and strong anisotropy are needed to meet the increasing demand for devices used in millimeter-wave frequency. Herein, we demonstrate a composition of Sr0.7La0.3Fe12−xAlxO19 hexaferrites prepared by the conventional ceramic method. We investigate the phase, morphology and magnetic properties of Al-substituted strontium hexaferrites. This study illustrates that aluminum substitution has a significant effect to improve the coercivity and anisotropic field. Finally, we propose an empirical relationship between the functional properties of Al-substituted ferrites and the amount of aluminum.

Notes

Acknowledgements

The authors gratefully acknowledge the support from the National Natural Science Foundation of China (51772046, 51472045), and Scientific Research Sponsorship Program by State Grid Corporation of China (SGLNSY00FZJS1800983). The authors would like to thank Mr Y. Liu and H Liu for the XRD measurements and their helpful discussions.

References

  1. 1.
    P. Kumar, A. Gaur, Room temperature magneto-electric coupling in La–Zn doped Ba1–xLaxFe12–xZnxO19 (x = 0.0–0.4) hexaferrite. Appl. Phys. A 123, 732 (2017)ADSCrossRefGoogle Scholar
  2. 2.
    S. Bierlich, F. Gellersen, A. Jacob, J. Töpfer, Low-temperature sintering and magnetic properties of Sc- and In-substituted M-type hexagonal barium ferrites for microwave applications. Mater. Res. Bull. 86, 19–23 (2017)CrossRefGoogle Scholar
  3. 3.
    D.A. Vinnik, A.B. Ustinov, D.A. Zherebtsov, V.V. Vitko, S.A. Gudkova, I. Zakharchuk, E. Lähderanta, R. Niewa, Structural and millimeter-wave characterization of flux grown Al substituted barium hexaferrite single crystals. Ceram. Int. 41, 12728–12733 (2015)CrossRefGoogle Scholar
  4. 4.
    M.A. Popov, I.V. Zavislyak, G. Srinivasan, Current tunable barium hexaferrite millimeter wave resonator. Microw. Opt. Technol. Lett. 60, 458–462 (2018)CrossRefGoogle Scholar
  5. 5.
    D.A. Vinnik, I.A. Ustinova, A.B. Ustinov, S.A. Gudkova, D.A. Zherebtsov, E.A. Trofimov, N.S. Zabeivorota, G.G. Mikhailov, R. Niewa, Millimeter-wave characterization of aluminum substituted barium lead hexaferrite single crystals grown from PbO–B2O3 flux. Ceram. Int. 43, 15800–15804 (2017)CrossRefGoogle Scholar
  6. 6.
    L. Peng, L. Li, X. Zhong, Y. Hu, X. Tu, R. Wang, Magnetic, electrical, and dielectric properties of La–Cu substituted Sr-hexaferrites for use in microwave LTCC devices. J. Alloys Compd. 665, 31–36 (2016)CrossRefGoogle Scholar
  7. 7.
    C. Wu, Z. Yu, A.S. Sokolov, C. Yu, K. Sun, X. Jiang, Z. Lan, V.G. Harris, Tailoring magnetic properties of self-biased hexaferrites using an alternative copolymer of isobutylene and maleic anhydride. AIP Adv. 8, 056221 (2018)ADSCrossRefGoogle Scholar
  8. 8.
    Y. Yang, F. Wang, J. Shao, D. Huang, J. Tang, K.M.U. Rehman, Investigation of magnetic and structural properties of Ni–Zr co-doped M-type Sr–La hexaferrites. Appl. Phys. A 124, 129 (2018)ADSCrossRefGoogle Scholar
  9. 9.
    P. Sahu, S.N. Tripathy, R. Pattanayak, R. Muduli, N. Mohapatra, S. Panigrahi, Effect of grain size on electric transport and magnetic behavior of strontium hexaferrite (SrFe12O19). Appl. Phys. A 123, 3 (2017)ADSCrossRefGoogle Scholar
  10. 10.
    Z. Xu, Z. Lan, K. Sun, Z. Yu, X. Jiang, R. Guo, C. Wu, Properties of Ba-hexaferrite thin films with an interfacial layer deposited at various substrate temperatures. J. Alloys Compd. 575, 257–262 (2013)CrossRefGoogle Scholar
  11. 11.
    S.V. Trukhanov, A.V. Trukhanov, V.O. Turchenko, V.G. Kostishin, L.V. Panina, I.S. Kazakevich, A.M. Balagurov, Crystal structure and magnetic properties of the BaFe12–xInxO19 (x = 0.1–1.2) solid solutions. J. Magn. Magn. Mater. 417, 130–136 (2016)ADSCrossRefGoogle Scholar
  12. 12.
    S.V. Trukhanov, A.V. Trukhanov, V.G. Kostishyn, L.V. Panina, V.A. Turchenko, I.S. Kazakevich, An.V. Trukhanov, E.L. Trukhanova, V.O. Natarov, A.M. Balagurov, Thermal evolution of exchange interactions in lightly doped barium hexaferrites. J. Magn. Magn. Mater. 426, 554–562 (2017)ADSCrossRefGoogle Scholar
  13. 13.
    S.V. Trukhanov, A.V. Trukhanov, V.G. Kostishyn, L.V. Panina, An.V. Trukhanov, V.A. Turchenko, D.I. Tishkevich, E.L. Trukhanova, V.V. Oleynik, O.S. Yakovenko, L. Yu. D.A. Matzui, Vinnik, Magnetic, dielectric and microwave properties of the BaFe12 – xGaxO19 (x ≤ 1.2) solid solutions at room temperature. J. Magn. Magn. Mater. 442, 300–310 (2017)ADSCrossRefGoogle Scholar
  14. 14.
    L. Peng, L. Li, R. Wang, Y. Hu, X. Tu, X. Zhong, Effect of La–Co substitution on the crystal structure and magnetic properties of low temperature sintered Sr1–xLaxFe12–xCoxO19 (x = 0–0.5) ferrites. J. Magn. Magn. Mater. 393, 399–403 (2015)ADSCrossRefGoogle Scholar
  15. 15.
    X. Liu, W. Zhong, S. Yang, Z. Yu, B. Gu, Y. Du, Influences of La3+ substitution on the structure and magnetic properties of M-type strontium ferrites. J. Magn. Magn. Mater. 238, 207–214 (2002)ADSCrossRefGoogle Scholar
  16. 16.
    Y. Chen, M.J. Nedoroscik, A.L. Geiler, C. Vittoria, V.G. Harris, Perpendicularly oriented polycrystalline BaFe11.1Sc0.9O19 hexaferrite with narrow FMR linewidths. J. Am. Ceram. Soc. 91, 2952–2956 (2008)CrossRefGoogle Scholar
  17. 17.
    C. Zhang. X. Liu, K.M.U. Rehman, C. Liu, H. Li, X. Meng, Influence of Y3+ substitution on the structural and magnetic properties of Sr0.7La0.3Fe11.75–2xYxCo0.25O19 hexagonal ferrites. Appl. Phys. A 123, 526 (2017)ADSCrossRefGoogle Scholar
  18. 18.
    V.A. Turchenko, S.V. Trukhanov, A.M. Balagurov, V.G. Kostishyn, A.V. Trukhanov, L.V. Panina, E.L. Trukhanova, Features of crystal structure and dual ferroic properties of BaFe12–xMexO19 (Me = In3+ and Ga3+; x = 0.1–1.2). J. Magn. Magn. Mater. 464, 139–147 (2018)ADSCrossRefGoogle Scholar
  19. 19.
    Y. Yang, F. Wang, X. Liu, J. Shao, D. Huang, Magnetic and microstructural properties of Al substituted M-type Ca–Sr hexaferrites. J. Magn. Magn. Mater. 421, 349–354 (2017)ADSCrossRefGoogle Scholar
  20. 20.
    A.V. Trukhanov, L.V. Panina, S.V. Trukhanov, V.A. Turchenko, M. Salem, Evolution of structure and physical properties in Al-substituted Ba-hexaferrites. Chin. Phys. B 25, 016102–016106 (2016)CrossRefGoogle Scholar
  21. 21.
    F. Rhein, R. Karmazin, M. Krispin, T. Reimann, O. Gutfleisch, Enhancement of coercivity and saturation magnetization of Al3+ substituted M-type Sr-hexaferrites. J. Alloys Compd. 690, 979–985 (2017)CrossRefGoogle Scholar
  22. 22.
    A.V. Trukhanov, V.G. Kostishyn, L.V. Panina, V.V. Korovushkin, V.A. Turchenko, P. Thakur, A. Thakur, Y. Yang, D.A. Vinnik, E.S. Yakovenko, L.Yu. Matzui, E.L. Trukhanova, S.V. Trukhanov, Control of electromagnetic properties in substituted M-type hexagonal ferrites. J. Alloys Compd. 754, 247–256 (2018)CrossRefGoogle Scholar
  23. 23.
    C. Wu, Z. Yu, G. Wu, K. Sun, Y. Yang, X. Jiang, R. Guo, Z. Lan, Low-temperature sintering of barium hexaferrites with Bi2O3/CuO additives. IEEE Trans. Magn. 51, 11 (2015)Google Scholar
  24. 24.
    Z. Zi, Y. Sun, X. Zhu, Z. Yang, J. Dai, W. Song, Structural and magnetic properties of SrFe12O19 hexaferrite synthesized by a modified chemical co-precipitation method. J. Magn. Magn. Mater. 320, 2746–2751 (2008)ADSCrossRefGoogle Scholar
  25. 25.
    V. Dixit, C.N. Nandadasa, S.G. Kim, S. Kim, J. Park, Y. Hong, L.S.I. Liyanage, A. Moitra, Site occupancy and magnetic properties of Al-substituted M-type strontium hexaferrite. J. Appl. Phys. 117, 243904 (2015)ADSCrossRefGoogle Scholar
  26. 26.
    E.C. Stoner, F.R.S.,E.P. Wohlfarth, A mechanism of magnetic hysteresis in heterogeneous alloys. IEEE Trans. Magn. 27, 3475–3518 (1991)ADSCrossRefGoogle Scholar
  27. 27.
    Y. Wang, Y. Liu, H. Zhang, J. Li, L. Gao, D. Chen, Y. Chen, Preparation of Scandium-doped, textured, M-type Barium ferrite via a wet magnetizing orientation process. J. Electron. Mater. 47, 1330–1334 (2018)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yue Dai
    • 1
  • Zhongwen Lan
    • 1
  • Chuanjian Wu
    • 1
  • Changlong Yang
    • 2
  • Zhong Yu
    • 1
  • Rongdi Guo
    • 1
  • Wei Wang
    • 2
  • Chuan Chen
    • 3
  • Xin Liu
    • 3
  • Xiaona Jiang
    • 1
  • Ke Sun
    • 1
    Email author
  1. 1.School of Materials and EnergyUniversity of Electronic Science and Technology of ChinaChengduChina
  2. 2.State Grid Shenyang Electric Power Supply CompanyShenyangChina
  3. 3.Global Energy Interconnection Research Institute Co., Ltd.BeijingChina

Personalised recommendations