Applied Physics A

, 124:795 | Cite as

Zn-doping to improve the hydration level sensing performance of CuO films

  • Elif Gürbüz
  • Bünyamin ŞahinEmail author


Many previous works have reported the importance of hydration level monitoring especially during the high exercise activity in warm environments. Herein, we report the hydration level monitoring properties of the ZnxCu1−xO (x = 0, 0.05 and 0.1) nanostructures in the wide range of artificial sweat concentrations. Nanostructured CuO films were sequentially synthesized via the successive ionic layer adsorption and reaction (SILAR) method. The morphological, microstructural, optical, and sensing response of the produced samples were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), (UV–vis) spectrophotometer and current–voltage (I–V) measurements, respectively. XRD patterns of the films revealed that the mean crystallite size is decreasing from ~ 13.50 to ~ 11.03 nm with increasing Zn content. From UV–visible spectrum, it was determined that the optical energy band gap (Eg) of the films changes with the Zn content in the growth solution and it was in the range of (1.40–1.53) eV. A considerable improvement in hydration level sensing properties was noticed for 1 M% Zn-doped CuO films for all concentration levels. The results provide a new approach to fabricate high performance nanostructured metal oxide based hydration level monitoring devices.



This work is financially supported by Scientific Research Projects Commission of the Mustafa Kemal University (Project No: 16694).


  1. 1.
    M.G. Bulmer, G.D. Forwell, The concentration of sodium in thermal sweat. J. Physiol. (Lond.) 132, 115–122 (1956)CrossRefGoogle Scholar
  2. 2.
    M.J. Patterson, S.D.R. Galloway, M.A. Nimmo, Effect of induced metabolic alkalosis on sweat composition in men. Acta Physiol. Scand. 174, 41–46 (2002)CrossRefGoogle Scholar
  3. 3.
    G. Liu, M. Alomari, B. Sahin, S.E. Snelgrove, J. Edwards, A. Mellinger, T. Kaya, Real-time sweat analysis via alternating current conductivity of artificial and human sweat. Appl. Phys. Lett. 106, 133702 (2015)ADSCrossRefGoogle Scholar
  4. 4.
    B. Sahin, M. Alomari, T. Kaya, Hydration detection through use of artificial sweat in doped- and partially-doped nanostructured CuO films. Ceram. Int. 41, 8002–8007 (2015)CrossRefGoogle Scholar
  5. 5.
    N.J. Rehrer, L.M. Burke, Sweat losses during various sports. Aust. J. Nutr. Diet. 53, 13–16 (1996)Google Scholar
  6. 6.
    B. Sahin, T. Kaya, Enhanced hydration detection properties of nanostructured CuO films by annealing. Microelectron. Eng. 164, 88–92 (2016)CrossRefGoogle Scholar
  7. 7.
    J.M. Dubach, J.M.E. Lim, N. Zhang, P. Kevin, F. Clark, H. Clark, In vivo sodium concentration continuously monitored with fluorescent sensors. Integr. Biol. 3, 142–148 (2011)CrossRefGoogle Scholar
  8. 8.
    L.B. Baker, J.R. Stofan, A.A. Hamilton, C.A. Horswill, Comparison of regional patch collection vs. whole body washdown for measuring sweat sodium and potassium loss during exercise. J. Appl. Physiol. 107, 887–895 (2009)CrossRefGoogle Scholar
  9. 9.
    M.M. Delgado-Povedano, M. Calderón-Santiago, M.D. Luque de Castro, F. Priego-Capote, Metabolomics analysis of human sweat collected after moderate exercise. Talanta 177, 47–65 (2018)CrossRefGoogle Scholar
  10. 10.
    A.J. Hendricks, A.R. Vaughn, A.K. Clark, G. Yosipovitch, V.Y. Shi, Sweat mechanisms and dysfunctions in atopic dermatitis. J. Dermatol. Sci. 89, 105–111 (2018)CrossRefGoogle Scholar
  11. 11.
    P.R. Solanki, A. Kaushik, V.V. Agrawal, B.D. Malhotra, Nanostructured metal oxide-based biosensors. NPG Asia Mater. 3, 17–24 (2011)CrossRefGoogle Scholar
  12. 12.
    M. Sudha, S. Radha, S. Kirubaveni, R. Kiruthika, R. Govindaraj, N. Santhosh, Experimental study on structural, optoelectronic and room temperature sensing performance of Nickel doped ZnO based ethanol sensors. Solid State Sci. 78, 30–39 (2018)ADSCrossRefGoogle Scholar
  13. 13.
    R. Zhao, K. Li, Z. Wang, X. Xing, Y. Wang, Gas-sensing performances of Cd-doped ZnO nanoparticles synthesized by a surfactant-mediated method for n-butanol gas. J. Phys. Chem. Solids 112, 43–49 (2018)ADSCrossRefGoogle Scholar
  14. 14.
    N. Mukherjee, B. Show, S.K. Maji, U. Madhu, S.K. Bhar, B.C. Mitra, G.G. Khan, A. Mondal, CuO nano-whiskers: electrodeposition, Raman analysis, photoluminescence study and photocatalytic activity. Mater. Lett. 65, 3248–3250 (2011)CrossRefGoogle Scholar
  15. 15.
    F. Pola-Albores, W. Antunez-Flores, P. Amezaga-Madrid, E. Rios-Valdovinos, M. Valenzuela-Zapata, F. Paraguay-Delgado, M. Miki-Yoshida, Growth and microstructural study of CuO covered ZnO nanorods. J. Cryst. Growth 351, 77–82 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    H. Qin, Z. Zhang, X. Liu, Y. Zhang, J. Hu, J. Magn. Magn. Mater. 322, 1994–1998 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    M. Zhang, H. Zhang, L. Li, K. Tuokedaerhan, Z. Jia, Er-enhanced humidity sensing performance in black ZnO-based sensor. J. Alloy. Compd. 744, 364–369 (2018)CrossRefGoogle Scholar
  18. 18.
    Z. El khalidi, E. Comini, B. Hartiti, A. Moumen, H.M.M.M. Arachchige, S. Fadili, P. Thevenin, A. Kamal, Effect of vanadium doping on ZnO sensing properties synthesized by spray pyrolysis. Mater. Des. 139, 56–64 (2018)CrossRefGoogle Scholar
  19. 19.
    V.A.T. Dam, M.A.G. Zevenbergen, R. van Schaijk, Toward wearable patch for sweat analysisV. Sens. Actuators B 236, 834–838 (2016)CrossRefGoogle Scholar
  20. 20.
    EN 1811:2011 (2011) Reference test method for release of nickel from all post-assemblies which are inserted into pierced parts of the human body and articles intended to come into direct and prolonged contact with the skin, German version EN 1811Google Scholar
  21. 21.
    H. Songa, S. Lei, X. Li, S. Guoa, P. Cui, X. Wei, W. Liua, H. Liub, Quantitative description of Ag nanoparticles-graphene hybrids with optimized morphology on sensing performance. Sens. Actuators A 271, 53–59 (2018)CrossRefGoogle Scholar
  22. 22.
    R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A32, 751–767 (1976)ADSCrossRefGoogle Scholar
  23. 23.
    R. Aydin, B. Sahin, Comprehensive research on physical properties of Zn and M (M: Li, Na, K) double doped cadmium oxide (CdO) nanostructures using SILAR method. Ceram. Int. 43, 9285–9290 (2017)CrossRefGoogle Scholar
  24. 24.
    G. Selvan, M.P. Abubacker, A.R. Balu, Influence of (Zn + F) double doping on the structural, morphological, photoluminescence, optoelectrical properties and antibacterial activity of CdS thin films. J. Mater. Sci. Mater. Electron. 28, 2335–2342 (2017)CrossRefGoogle Scholar
  25. 25.
    M. Kaiser, Effect of rare earth elements on the structural, magnetic and electrical behavior of Ni–Zn–Cr nanoferrites. J. Alloy. Compd. 719, 446–454 (2017)CrossRefGoogle Scholar
  26. 26.
    A. Augustin, K.R. Udupa, K. Udaya Bhat, Crystallite size measurement and micro-strain analysis of electrodeposited copper thin film using Williamson-Hall method. AIP Conf. Proc. 1728, 020492 (2016)CrossRefGoogle Scholar
  27. 27.
    P. Kumarn, P. Sharma, A.G. Joshi, R. Shrivastav, S. Dass, V.R. Satsangi, Nano porous hematite for solar hydrogen production. J. Electrochem. Soc. 159(8), 685–691 (2012)CrossRefGoogle Scholar
  28. 28.
    E. Gürbüz, R. Aydin, B. Şahin, A study of the influences of transition metal (Mn,Ni) co-doping on the morphological, structural and optical properties of nanostructured CdO films. J. Mater. Sci.: Mater. Electron. 43, 1823–1831 (2018)Google Scholar
  29. 29.
    H.T. Hsu, M.H. Chiang, C.H. Huang, W.T. Lin, Y.S. Fu, T.F. Guo, Effects of Ge- and Sb-doping and annealing on the tunable bandgaps of SnS films. Thin Solid Films 584, 37–40 (2015)ADSCrossRefGoogle Scholar
  30. 30.
    G. Turgut, E. Sönmez, A study of Pb-doping effect on structural, optical, and morphological properties of ZnO thin films deposited by sol–gel spin coating. Metall. Mater. Trans. A 45, 3675–3685 (2014)CrossRefGoogle Scholar
  31. 31.
    J. Kaur, S. Tripathi, Pb dopant induced changes in structural, optical and electrical properties of CdSe thin films. J. Alloy. Compd. 622, 953–959 (2015)CrossRefGoogle Scholar
  32. 32.
    S. Ozen, S. Korkmaz, V. Senay, S. Pat, The substrate effect on Ge doped GaN thin films coated by thermionic vacuum arc. J. Mater. Sci.: Mater. Electron. 28, 1288–1293 (2017)Google Scholar
  33. 33.
    J. Frascaroli, F.G. Volpe, S. Brivio, S. Spiga, Effect of Al doping on the retention behavior of HfO2 resistive switching memories. Microelectron. Eng. 147, 104–107 (2015)CrossRefGoogle Scholar
  34. 34.
    S. Venkataraj, S. Hishita, Y. Adachi, I. Sakaguchi, K. Matsumoto, N. Saito, H. Haneda, N. Ohashi, Structure and electric properties in tin-doped zinc oxide films synthesized by pulsed laser deposition. J. Electrochem. Soc. 156, 424–429 (2009)CrossRefGoogle Scholar
  35. 35.
    M. Parmar, R. Bhatia, V. Prasad, K. Rajanna, Ethanol sensing using CuO/MWNT thin film. Sens. Actuators B 158, 229–234 (2011)CrossRefGoogle Scholar
  36. 36.
    R.K. Mishra, P.P. Sahay, Synthesis, characterization and alcohol sensing property of Zn-doped SnO2 nanoparticles. Ceram. Int. 38, 2295–2304 (2012)CrossRefGoogle Scholar
  37. 37.
    Q. Zhou, W. Chen, L. Xu, R. Kumar, Y. Gui, Z. Zhao, C. Tang, S. Zhu, Highly sensitive carbon monoxide (CO) gas sensors based on Ni and Zn doped SnO2 nanomaterials. Ceram. Int. 44, 4392–4399 (2018)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physics, Graduate School of Natural and Applied SciencesMustafa Kemal UniversityHatayTurkey
  2. 2.Department of Physics, Faculty of Arts and SciencesMustafa Kemal UniversityHatayTurkey

Personalised recommendations