Advertisement

Applied Physics A

, 124:822 | Cite as

Improving of tribology properties of TiAl6V4 with nanostructured Ti/TiN-multilayered coating deposited by high-vacuum magnetron sputtering

  • Ali ShanaghiEmail author
  • Sajjad Ghasemi
  • Paul K. Chu
Article
  • 78 Downloads

Abstract

TiAl6V4 is widely used in the medical and aerospace industry due to the good corrosion resistance and mechanical properties. In this work, single-layer TiN and multilayer Ti/TiN coatings are deposited on TiAl6V4 by high-vacuum magnetron sputtering and the phase, structure, and morphology are investigated by GIXRD, XPS, FE-SEM, and AFM. The tribological properties are determined by pin-on-disk tests with a tungsten carbide pin (WC). The 1.4 µm thick coating contains TiN, TiOxNy, and TiO2 phases. The friction coefficients, hardness, and elastic modulus of the TiN and Ti/TiN coatings are 0.43 and 0.49, 19.744 and 22.462 GPa, and 192.709 and 183.565 GPa, respectively. The tiny cracks along the scratch path on the TiN coating arise from the lower toughness compared to the Ti/TiN-multilayered coating. The larger friction coefficient in the presence of the Ti interlayer may be due to network failure at the Ti and TiN boundaries which show different crystalline structures and the stress formed at both layers prohibits dislocation movement in the Ti layer. More brittle cracks are observed from the TiN mono-layered coating and larger plastic deformation occurs on the multilayered coating, indicating that the latter is more resistant to delamination. The adhesion mechanism is dominated by the Ti intermediate layer and can be exploited to improve the effectiveness of TiN coatings in applications such as biomedical implants.

Notes

Acknowledgements

The authors would like to thank the Iranian Nanotechnology Initiative Council. The work was financially supported by Malayer University Research Grant, Iran National Science Foundation, and City University of Hong Kong Applied Research Grants (ARG) Nos. 9667122 and 9667144.

References

  1. 1.
    V.M.C.A. Oliveira, C. Aguiar, A.M. Vazquez, A. Robin, Barboza, M.J.R, Improving corrosion resistance of Ti–6Al–4V alloy through plasma-assisted PVD deposited nitride coatings. Corr. Sci. 88, 317–327 (2014)Google Scholar
  2. 2.
    M. Atapour, A.L. Pilchak, M. Shamanian, M.H. Fathi, Corrosion behavior of Ti–8Al–1Mo–1V alloy compared to Ti–6Al–4V. Mater. Des. 32(3), 1692–1696 (2011).Google Scholar
  3. 3.
    V. Krishnan, A. Krishnan, R. Remya; K.K. Ravikumar, S.A. Nair, S.M.A. Shibli, H.K. Varma, K. Sukumaran, K.J. Kumar, Development and evaluation of two PVD-coated β-titanium orthodontic archwires for fluoride-induced corrosion protection. Acta. Biomater. 7(4), 1913–1927 (2011)Google Scholar
  4. 4.
    H. Krawiec, V. Vignal, E. Schwarzenboeck, J. Banas, Role of plastic deformation and microstructure in the micro-electrochemical behaviour of Ti–6Al–4V in sodium chloride solution.Electrochim. Acta. 104, 400–406 (2013)Google Scholar
  5. 5.
    S. Kumar, T.S. Narayanan, Electrochemical characterization of β-Ti alloy in Ringer’s solution for implant application. J. Alloys Compd. 479(1), 699–703 (2009)Google Scholar
  6. 6.
    M. Geetha, A. Singh, R. Asokamani, A. Gogia, Ti based biomaterials, the ultimate choice for orthopaedic implants—a review. Prog. Mater. Sci. 54(3), 397–425 (2009)Google Scholar
  7. 7.
    S. Bauer, P. Schmuki, K Von der Mark, J. Park Engineering biocompatible implant surfaces: part I: materials and surfaces. Prog. Mater. Sci. 58(3), 261–326 (2013)Google Scholar
  8. 8.
    J. Grogan, B. O’Brien, S. Leen, P. McHugh, A corrosion model for bioabsorbable metallic stents. Acta. Biomater. 7(9), 3523–3533 (2011)Google Scholar
  9. 9.
    G. Manivasagam, D. Dhinasekaran, A. Rajamanickam, Biomedical implants: corrosion and its prevention—a review.Recent. Patents. Corr. Sci. 2(1), 40–54 (2010)Google Scholar
  10. 10.
    Y. Wang, W. Tian, T. Zhang, Y. Yang, Microstructure, spallation and corrosion of plasma sprayed Al2O3–13% TiO2 coatings. Corr. Sci. 51(12), 2924–2931 (2009)Google Scholar
  11. 11.
    C.C. Chen, S.J. Ding, Effect of heat treatment on characteristics of plasma sprayed hydroxyapatite coatings. Mater. Trans. 47(3), 935–940 (2006)Google Scholar
  12. 12.
    W. Yang, G. Ayoub, I. Salehinia, B. Mansoor, H. Zbib, Deformation mechanisms in Ti/TiN multilayer under compressive loading. Acta. Mater. 122, 99–108 (2017)Google Scholar
  13. 13.
    W.J. Chou, G.P. Yu, J.H. Huang, Mechanical properties of TiN thin film coatings on 304 stainless steel substrates. Surf. Coat. Technol. 149(1), 7–13 (2002)Google Scholar
  14. 14.
    M. Herranen, U. Wiklund, J.O. Carlsson, S. Hogmark, Corrosionbehaviour of Ti/TiN multilayer coated tool steel. Surf. Coat. Technol. 99(1), 191–196 (1998)Google Scholar
  15. 15.
    M. Bromark, M. Larsson, P. Hedenqvist, S. Hogmark, Wear of PVD Ti/TiN multilayer coatings. Surf. Coat. Technol. 90(3), 217–223 (1997)Google Scholar
  16. 16.
    C. Liu, P.K. Chu, G. Lin, D. Yang, Effects of Ti/TiN multilayer on corrosion resistance of nickel–titanium orthodontic brackets in artificial saliva. Corr. Sci. 49(10), 3783–3796 (2007)Google Scholar
  17. 17.
    R. Hübler, A. Schröer, W. Ensinger, G. Wolf, F. Stedile, W. Schreiner, I. Baumvol Corrosion behavior of steel coated with thin film TiN/Ti composites. J. Vac. Sci. Technol. A. 11(2), 451–453 (1993)ADSGoogle Scholar
  18. 18.
    M. Herranen, A.D. Bauer, J.O. Carlsson, R. F. Bunshah, Corrosion properties of thin molybdenum silicide films. Surf. Coat. Technol. 96(2), 245–254 (1997)Google Scholar
  19. 19.
    Q. Zhang, Y.X. Leng, F. Qi, T. Tao, N. Huang, Mechanical and corrosive behavior of Ti/TiN multilayer films with different modulation periods.Nucl. Instrum. Methods. Phys. Res. B. 257(1–2), 411–415 (2007)ADSGoogle Scholar
  20. 20.
    J. Marco, A. Agudelo, J. Gancedo, D. Hanžel, Corrosion resistance of single TiN layers, Ti/TiN bilayers and Ti/TiN/Ti/TiN multilayers on iron under a salt fog spray (phohesion) test: an evaluation by XPS. Surf. Interface. Anal. 27(2), 71–75 (1999)Google Scholar
  21. 21.
    M. Flores, S. Muhl, L. Huerta, E. Andrade, The influence of the period size on the corrosion and the wear abrasion resistance of TiN/Ti multilayers. Surf. Coat. Technol. 200(5–6), 1315–1319 (2005)Google Scholar
  22. 22.
    K. Shukla, R. Rane, J. Alphonsa, P. Maity, S. Mukherjee, Structural, mechanical and corrosion resistance properties of Ti/TiN bilayers deposited by magnetron sputtering on AISI 316L. Surf. Coat. Technol. 324, 167–174 (2017)Google Scholar
  23. 23.
    C.L. Jiang, H.L. Zhu, K.S. Shin, Y.B. Tang, Influence of titanium interlayer thickness distribution on mechanical properties of Ti/TiN multilayer coatings. Thin. Solid. Films. 632, 97–105 (2017)ADSGoogle Scholar
  24. 24.
    G. Kim, S. Lee, J. Hahn, B. Lee, J. Han, J. Lee, Effects of the thickness of Ti buffer layer on the mechanical properties of TiN coatings. Surf. Coat. Technol. 171(1), 83–90 (2003)Google Scholar
  25. 25.
    R. Yogamalar, R. Srinivasan, A. Vinu, K. Ariga, A.C. Bose, X-ray peak broadening analysis in ZnO nanoparticles.Solid. State. Commun. 149(43–44), 1919–1923 (2009)ADSGoogle Scholar
  26. 26.
    S. Logothetidis, P. Patsalas, C. Charitidis, Enhanced catalytic activity of nanostructured cerium oxide films. Mater. Sci. Eng. C. 23(6–8), 803–806 (2003)Google Scholar
  27. 27.
    Y.H. Chen, K.W. Lee, W.A. Chiou, Y.W. Chung, L.M. Keer, Synthesis and structure of smooth, superhard TiN/SiNx multilayer coatings with an equiaxed microstructure. Surf. Coat. Technol. 146147, 209–214 (2001)Google Scholar
  28. 28.
    A.Y. Lee, D.M. Blakeslee, C.J. Powell, J. Rumble, Development of the web-based NIST X-ray Photoelectron Spectroscopy (XPS) Database. Data Sci J. 1(6), 1–12 (2002)Google Scholar
  29. 29.
    B. Subramanian, R. Ananthakumar, V.S. Vidhya, M. Jayachandran, Influence of substrate temperature on the materials properties of reactive DC magnetron sputtered Ti/TiN multilayered thin films. Mater. Sci. Eng. B. 176(1), 1–7 (2011)Google Scholar
  30. 30.
    B. Subramanian, R. Ananthakumar, M. Jayachandran, Structural and tribological properties of DC reactive magnetron sputtered titanium/titanium nitride (Ti/TiN) multilayered coatings. Surf. Coat. Technol. 205(11), 3485–3492 (2011)Google Scholar
  31. 31.
    J.N. Musher, R.G. Gordon, Atmospheric pressure chemical vapor deposition of titaniumnitride from tetrakis (diethylamido) titanium and ammonia. J. Electrochem. Soc. 143(2), 736–744 (1996)Google Scholar
  32. 32.
    W.J. Gammon, O. Kraft, A.C. Reilly, B.C. Holloway, Experimental comparison of N(1 s) X-ray photoelectron spectroscopy binding energies of hard and elastic amorphous carbon nitride films with reference organic compounds. Carbon. 41, 1917–1923 (2003)Google Scholar
  33. 33.
    Y. Ding, Z. Farhat, D.O. Northwood, A.T. Alpas, Mechanical properties and tribological behaviour of nanolayered Al/Al2O3 and Ti/TiN composites. Surf. Coat. Technol. 68, 459–467 (1994)Google Scholar
  34. 34.
    E. Martínez, J. Romero, A. Lousa, J. Esteve, Nanoindentation stress–strain curves as a method for thin-film complete mechanical characterization: application to nanometric CrN/Cr multilayer coatings. Appl. Phys. A. 77(3), 419–427 (2003)ADSGoogle Scholar
  35. 35.
    S. Ghasemi, A. Shanaghi, P.K. Chu, Nano mechanical and wear properties of multi-layer Ti/TiN coatingsdeposited on Al 7075 by high-vacuum magnetron sputtering. Thin. Solid. Films. 638, 96–104 (2017)ADSGoogle Scholar
  36. 36.
    S. Ghasemi, A. Shanaghi, P. K. Chu, Corrosion behavior of reactive sputtered Ti/TiN nanostructured coating and effects of intermediate titanium layer on self-healing properties. Surf. Coat. Technol. 326, 156–164 (2017)Google Scholar
  37. 37.
    J.A. Thornton, High rate thick film growth. Annu. Rev. Mater. Sci. 7(1), 239–260 (2014).ADSMathSciNetGoogle Scholar
  38. 38.
    D. Zhou, H. Peng, L. Zhu, H. Guo, S. Gong, Microstructure, hardness and corrosion behaviour of Ti/TiN multilayer coatings produced by plasma activated EB-PVD. Surf. Coat. Technol. 258, 102–107 (2014)Google Scholar
  39. 39.
    X. Li, B. Bhushan, A review of nanoindentation continuous stiffness measurement technique and its applications. Mater. Charact. 48(1), 11–36 (2002)Google Scholar
  40. 40.
    L. Ma, J. Cairney, M. Hoffman, P. Munroe, Characterization of TiN thin films subjected to nanoindentation using focused ion beam milling. Appl. Surf. Sci. 237(1), 627–631 (2004)ADSGoogle Scholar
  41. 41.
    W.C. Oliver, G.M. Pharr, Animproved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7(06), 1564–1583 (1992)ADSGoogle Scholar
  42. 42.
    A.D. Pogrebnjak, S.N. Bratushka, V.M. Beresnev, N. Levintant-Zayonts, Shape memory effect and superelasticity of titanium nickelide alloys implanted with high ion doses. Russ. Chem. Rev. 82(12), 1135–1159 (2013)ADSGoogle Scholar
  43. 43.
    X. Zhang, D. Liu, X. Li, H. Dong, Y. Xi, The Effect of Modulation Ratio of Cu/Ni Multilayer Films on the Fretting Damage Behaviour of Ti-811Titanium Alloy. Materials. 10(6), 585 (2017)ADSGoogle Scholar
  44. 44.
    Y. Liu, D. Bufford, H. Wang, Mechanical properties of highly textured Cu/Ni multilayers. Acta. Mater. 59, 1924–1933 (2011)Google Scholar
  45. 45.
    G. Abadias, G. Michel, C. Tromas, Stress, interfacial effects and mechanical properties of nanoscale multilayered coatings. Surf. Coat. Technol. 202, 844–853 (2007)Google Scholar
  46. 46.
    A.C. Fischer-Cripps, Nanoindentation testing, Nanoindentation. Springer, Berlin. (2011).Google Scholar
  47. 47.
    M.A. Al-Bukhaiti, K.A. Al-hatab, W. Tillmann, F. Hoffmann, T. Sprute, Tribological and mechanical properties of Ti/TiAlN/TiAlCN nanoscale multilayer PVD coatings deposited on AISI H11 hot work tool steel. Appl. Surf. Sci. 318, 180–190 (2014)ADSGoogle Scholar
  48. 48.
    F. Yildiz, A. Alsaran, Multi-pass scratch test behavior of modified layer formed during plasma nitriding. Tribol. Int. 43(8), 1472–1478 (2010)Google Scholar
  49. 49.
    J. Lackner, L. Major, M. Kot, Microscale interpretation of tribological phenomena in Ti/TiN soft-hard multilayer coatings on soft austenite steel substrates. Bull. Pol. Acad. Sci. Tech. Sci. 59(3), 343–355 (2011)Google Scholar
  50. 50.
    J.K. Park, C. Ziebert, M. Stüber, Y.J. Baik, Improvement of hardness and toughness of TiAlN coating by nanoscale multilayered structurization with Si3N4. Plasma. Process. Polym. 4(S1), S902-S905 (2007)Google Scholar
  51. 51.
    Y. Cheng, T. Browne, B. Heckerman, C. Bowman, V. Gorokhovsky, E. Meletis, Mechanical and tribological propertiesof TiN/Ti multilayer coating. Surf. Coat. Technol. 205(1), 146–151 (2010)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Materials engineering department, Faculty of engineeringMalayer UniversityMalayerIran
  2. 2.Department of Physics and Department of Materials Science and EngineeringCity University of Hong KongKowloonChina

Personalised recommendations