Applied Physics A

, 124:797 | Cite as

Simulation and experimental investigations of thermal degradation of polystyrene under femtosecond laser ablation

  • Yan-hua Huang
  • Meng-nan Wu
  • Cheng-wei Song
  • Jun-jie ZhangEmail author
  • Tao Sun
  • Lan Jiang


In the present work, the underlying mechanisms of femtosecond laser ablation of atactic polystyrene with a molecular weight of 10,000 g/mol are elucidated by large-scale molecular dynamics simulations, with an emphasis on the mechanisms of thermal degradation of polystyrene. In addition, experimental investigations of thermal degradation of polystyrene chips formed in femtosecond laser ablation, as well as pristine polystyrene, are conducted under a heating environment at 500 °C with Py-GC/MS analysis. Simulation results indicate that chain entanglement is predominant to facilitate thermal degradation of polystyrene chain, which is closely accompanied with single-chain excitation. The main degradation mechanisms of polystyrene revealed by simulations include β-scission of carbon backbone, dissociation of pendant group, breaking of π bond of pendant group and evaporation of individual atoms, which qualitatively agree well with experimental results. It is also found that the laser energy has a significant influence on the degradation of polystyrene under femtosecond laser ablation.


Author contributions

YH and JZ conceived the idea and designed the investigations. JZ and MW performed the molecular dynamics simulations. MW and CS designed the laser machining experiment, carried out the sample measurement and the data analysis. TS and LJ supervised the whole investigations. YH, MW and JZ wrote the manuscript. All authors read and approved the final manuscript.


This research was supported by the Science Challenge Program, China (Grant nos. TZ2008006-0201-02 and TZ2008006-0205-02) and the Fundamental Research Funds for the Central Universities.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interest.

Data availability

All data are fully available without restriction.


  1. 1.
    L. Zhang, B.S. Cui, L. Zhou, Y.P. Yuan, High Power Laser Part. Beams. 7, 151 (1995)Google Scholar
  2. 2.
    K.K. Mishra, R.K. Kardekar, R. Singh, H.C. Pant, Pramana-J. Phys. 59, 113 (2002)ADSCrossRefGoogle Scholar
  3. 3.
    B. Wei, S.J. Wang, H.G. Song, H.Y. Liu, J. Li, N. Liu, Petrol. Sci. 6, 306 (2009)CrossRefGoogle Scholar
  4. 4.
    R. Kodama, P.A. Norreys, K. Mima, A.E. Dangor, R.G. Evans, H. Fujita, Nature. 412, 798 (2001)ADSCrossRefGoogle Scholar
  5. 5.
    D.W. Hill, E. Castillo, K.C. Chen, Fusion Sci. Technol. 45, 113 (2004)CrossRefGoogle Scholar
  6. 6.
    K. Yin, C. Wang, X.R. Dong, Appl. Phys. A-Mater. 122, 764 (2016)ADSCrossRefGoogle Scholar
  7. 7.
    N. Maharjan, W. Zhaou, Y. Zhou, Y.C. Guan, Appl. Phys. A-Mater. 124, 519 (2018)ADSCrossRefGoogle Scholar
  8. 8.
    H. Homma, H. Kodota, H. Hosokawa, Fusion. Sci. Technol. 59, 27 (2011)CrossRefGoogle Scholar
  9. 9.
    K. Nagai, H. Yang, T. Norimatsu, Nucl. Fusion. 49, 1 (2009)CrossRefGoogle Scholar
  10. 10.
    A. Miotello, P.M. Ossi, in Springer Ser. Mat. Sci. (Berlin, 2010), p. 19Google Scholar
  11. 11.
    L. Jiang, H.L. Tsai, in Proceedings of NSF Workshop on Research Needs in Thermal, Aspects of Material Removal (Stillwater, 2003)Google Scholar
  12. 12.
    Y. Wang, X. Xu, L. Zhang, Appl. Phys. A 92, 849 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    D. Perez, L.J. Lewis, Phys. Rev. B 67, 184102 (2003)ADSCrossRefGoogle Scholar
  14. 14.
    S. Sonntag, C.T. Paredes, J. Roth, H.R. Trebin, Appl. Phys. A. 104, 559 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    A.K. Upadhyay, N.A. Inogamov, B. Rethfeld, H.M. Urbassek, Phys. Rev. B. 78, 045437 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    B.J. Holland, J.N. Hay, Polymer. 42, 6775 (2001)CrossRefGoogle Scholar
  17. 17.
    I.C. Mcneill, L. Memetea, W.J. Cole, Polym. Degrad. Stab. 49, 181 (1995)CrossRefGoogle Scholar
  18. 18.
    J.W. Park, S.C. Oh, H.P. Lee, H.T. Kim, K.O. Yoo, Polym. Degrad. Stab. 67, 535 (2000)CrossRefGoogle Scholar
  19. 19.
    M.R. Nyden, T.R. Coley, S. Mumby, Polym. Eng. Sci. 37, 1496 (1997)CrossRefGoogle Scholar
  20. 20.
    S.J. Stuart, J.A. Harrison, A.B. Tutein, J. Chem. Phys. 112, 6472 (2000)ADSCrossRefGoogle Scholar
  21. 21.
    Y.H. Huang, C.W. Song, J.J. Zhang, Sci. Chin. Phys. Mech. 58, 037002 (2015)Google Scholar
  22. 22.
    Y.H. Huang, C.W. Song, J.J. Zhang, J. Appl. Polym. Sci. 132, 42713 (2015)Google Scholar
  23. 23.
    S. Plimpton, J. Comput. Phys. 117, 1 (1995)ADSCrossRefGoogle Scholar
  24. 24.
    A. Stukowski, Model. Simul. Mater. Sci. 18, 015012 (2010)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yan-hua Huang
    • 1
  • Meng-nan Wu
    • 2
  • Cheng-wei Song
    • 1
  • Jun-jie Zhang
    • 3
    Email author
  • Tao Sun
    • 3
  • Lan Jiang
    • 2
  1. 1.Research Center of Laser FusionChina Academy of Engineering PhysicsMianyangChina
  2. 2.School of Mechanical and Vehicular EngineeringBeijing Institute of TechnologyBeijingChina
  3. 3.Center for Precision EngineeringHarbin Institute of TechnologyHarbinChina

Personalised recommendations