Applied Physics A

, 124:796 | Cite as

Quantitative SERS measurements by self-assembled ultra-smooth Au nanosphere superlattice with embedded internal reference

  • Shuang Lin
  • Xiang Lin
  • Haiyan Zhao
  • Wuliji HasiEmail author
  • Li WangEmail author


Quantitative analysis always encounters difficulty in the field of surface-enhanced Raman spectroscopy (SERS) because of the lack of accurate and reliable analytical means. In this work, a new approach was demonstrated for the quantitative SERS measurement by self-assembled superlattice based on ultra-smooth Au nanospheres (NSs) embedded with 4-methylthiobenzoic acid (4-MBA) as the internal reference. Malachite green (MG) in water and chrysoidine in drinks with detection limit of 0.35 µM were successfully and quantitatively measured by employing Au@4-MBA@Au NSs superlattice as solid SERS substrate. Compared with conventional SERS methods, the fitting linearity of the relative SERS intensity vs. analyte concentrations has significantly improved by this new analysis means. As a result, our approach is a reliable analytical strategy to solve quantitative problems in SERS analysis, which can be easily applied for on-site detection and for preliminary monitoring of food samples.



The work was supported by the International S&T Cooperation Program of China (Grant no. 2011DFA31770), the National Natural Science Foundation of China (Grant no. 21501021, 31871873 and 61805033) and the Inner Mongolia Autonomous Region Natural Science Foundation of China (Grant no. 2018LH08055).

Supplementary material

339_2018_2213_MOESM1_ESM.docx (331 kb)
Supplementary material 1 (DOCX 331 KB)


  1. 1.
    C. Han, Y. Yao, W. Wang, L. Qu, L. Brdley, S.L. Sun, Y.P. Zhao, Sensor Actuat. B: Chem. 251, 272–279 (2017)CrossRefGoogle Scholar
  2. 2.
    J. Chen, Y. Huang, Y. Zhao, J. Mater Chem B 3, 1898–1906 (2015)CrossRefGoogle Scholar
  3. 3.
    C. Müller, B. Glamuzina, I. Pozniak, K. Weber, D. Cialla, J. Popp, S.C. Pinzaru, Talanta 130, 108–115 (2014)CrossRefGoogle Scholar
  4. 4.
    J. Chen, W. Shen, B. Das, Y.Y. Li, G.W. Qin, RSC Adv 4, 22660–22668 (2014)CrossRefGoogle Scholar
  5. 5.
    N. Peica, I. Pavel, S. Cîntǎ Pînzaru, V.K. Rastogi, W. Kiefer, J. Raman Spectrosc. 36, 657–666 (2005)ADSCrossRefGoogle Scholar
  6. 6.
    Y. Xiong, Chem, Commun 47, 1580–1582 (2011)CrossRefGoogle Scholar
  7. 7.
    W.J. Ho, S.K. Fen, J.J. Liu, Appl. Phys. A 124, 29 (2018)ADSCrossRefGoogle Scholar
  8. 8.
    Y. Xu, X. Li, L. Jiang, G. Meng, P. Ran, Y.F. Lu, Appl. Phys. A 123, 322 (2017)ADSCrossRefGoogle Scholar
  9. 9.
    Y. Xiong, Y.N. Xia, Adv. Mater. 19, 3385–3391 (2007)CrossRefGoogle Scholar
  10. 10.
    B. Liu, P. Zhou, X.M. Liu, X. Sun, H. Li, M.S. Lin, Food Bioprocess Tech. 6, 710–718 (2013)CrossRefGoogle Scholar
  11. 11.
    P.G. Etchegoin, E.C. Le Ru, Phys. Chem. Chem. Phy. 10, 6079–6089 (2008)CrossRefGoogle Scholar
  12. 12.
    T.A. Saleh, M.M. Al-Shalalfeh, A.T. Onawole, A.A. Al-Saadi, Vib. Spectrosc. 90, 96–103 (2017)CrossRefGoogle Scholar
  13. 13.
    X. Lin, W.L.J. Hasi, X.T. Lou, D.Y. Lin, Z.W. Lu, Phys. Chem. Chem. Phys. 17, 31324–31331 (2015)CrossRefGoogle Scholar
  14. 14.
    X. Lin, W.L.J. Hasi, X.T. Lou, S. Lin, F. Yang, B.S. Jia, Y. Cui, D.X. Ba, D.Y. Lin, Z.W. Lu, J. Raman Spectrosc. 45, 162–167 (2014)ADSCrossRefGoogle Scholar
  15. 15.
    A. Jaiswal, L. Tian, S. Tadepalli, K.K. Liu, M. Fei, M.E. Farrell, P.M. Pellegrino, S. Singamaneni, Small 10, 4287–4292 (2014)Google Scholar
  16. 16.
    Y. Ma, H. Liu, M. Mao, J. Meng, L.L. Yang, J.H. Liu, Anal. Chem. 88, 8145–8151 (2016)CrossRefGoogle Scholar
  17. 17.
    J.E. Park, S. Kim, J. Son, Y.H. Lee, J.M. Nam, Nano Lett. 16, 7962–7967 (2016)ADSCrossRefGoogle Scholar
  18. 18.
    Y. Zou, L. Chen, Z. Song, D. Ding, Y.Q. Chen, Y.T. Xu, S.S. Wang, X.F. Lai, Y. Zhang, Y. Sun, Z. Chen, W.H. Tan, Nano Res. 9, 1418–1425 (2016)CrossRefGoogle Scholar
  19. 19.
    P. Joshi, Y. Zhou, T.O. Ahmadov, P. Zhang, J. Mater. Chem. C 2, 9964–9968 (2014)CrossRefGoogle Scholar
  20. 20.
    W. Fang, X. Zhang, Y. Chen, L. Wan, W.H. Huang, A. Shen, J. Hu, Anal. Chem. 87, 9217–9224 (2015)CrossRefGoogle Scholar
  21. 21.
    D.P. Cowcher, Y. Xu, R. Goodacre, Anal. Chem. 85, 3297–3302 (2013)CrossRefGoogle Scholar
  22. 22.
    J.D. Weatherston, N.C. Worstell, H.J. Wu, Analyst 141, 6051–6060 (2016)ADSCrossRefGoogle Scholar
  23. 23.
    A.M. Fales, T. Vo-Dinh, J. Mater. Chem. C 3, 7319–7324 (2015)CrossRefGoogle Scholar
  24. 24.
    V. Peksa, M. Jahn, L. Štolcová, M. Prochazka, K. Weber, D. Cialla-May, J. Prop, Anal. Chem. 87, 2840–2844 (2015)CrossRefGoogle Scholar
  25. 25.
    W.M. Ingram, C. Han, Q. Zhang, Y.P. Zhao, J. Phy. Chem. C 119, 27639–27648 (2015)CrossRefGoogle Scholar
  26. 26.
    S.M. Ansar, X. Li, S. Zou, D.M. Zhang, J. Phys. Chem. Lett. 3, 560–565 (2012)CrossRefGoogle Scholar
  27. 27.
    S.E.J. Bell, J.N. Mackle, N.M.S. Sirimuthu, Analyst 130, 545–549 (2005)ADSCrossRefGoogle Scholar
  28. 28.
    H.Y. Chen, M.H. Lin, C.Y. Wang, Y.M. Chang, S. Guo, J. Am. Chem. Soc. 137, 13698–13705 (2015)CrossRefGoogle Scholar
  29. 29.
    K.J. Si, P. Guo, Q. Shi, W. Cheng, Anal. Chem. 87, 5263–5269 (2015)CrossRefGoogle Scholar
  30. 30.
    Y. Zhou, R. Ding, P. Joshi, P. Zhang, Anal. Chim. Acta 874, 49–53 (2015)CrossRefGoogle Scholar
  31. 31.
    W. Shen, X. Lin, C. Jiang, C.Y. Li, H.X. Lin, J.T. Huang, S. Wang, G.K. Liu, X.M. Yan, Q.L. Zhong, B. Ren, Angew. Chem. Int. Edit. 54, 7308–7312 (2015)CrossRefGoogle Scholar
  32. 32.
    Y. Zheng, X. Zhong, Z. Li, Y.N. Xia, Part. Part. Syst. Char. 31, 266–273 (2014)CrossRefGoogle Scholar
  33. 33.
    X. Lin, S. Lin, Y.L. Liu, H.Y. Zhao, L. Wang, W.L.J. Hasi, Plamonics, (2018) CrossRefGoogle Scholar
  34. 34.
    W.L.J. Hasi, S. Lin, X. Lin, X.T. Lou, F. Yang, D.Y. Lin, Z.W. Lu, Anal. Methods 6, 9547–9553 (2014)CrossRefGoogle Scholar
  35. 35.
    S.R. Wu, X.D. Tian, S.Y. Liu, Y. Zhang, J.F. Li, J. Raman Spectrosc. 49, 659–667 (2018)ADSCrossRefGoogle Scholar
  36. 36.
    S. Kittler, S.G. Hickey, T. Wolff, A. Eychmuller, Z. Phys. Chem. 229, 235–245 (2015)CrossRefGoogle Scholar
  37. 37.
    J.E. Park, S. Kim, J. Son, Y. Lee, J.M. Nam, Nano lett. 16, 7962–7967 (2016)ADSCrossRefGoogle Scholar
  38. 38.
    Y.J. Lee, N.B. Schade, L. Sun, J.A. Fan, D.R. Bae, M.M. Marisacal, G. Lee, F. Capasso, S. Sacanna, V.N. Manoharan, G.R. Yi, ACS Nano 7, 11064–11070 (2013)CrossRefGoogle Scholar
  39. 39.
    J.H. Huh, J. Lee, S. Lee, ACS Photonics 5, 413–421 (2017)CrossRefGoogle Scholar
  40. 40.
    C. Matricardi, C. Hanske, J.L. Garcia-Pomar, J. Langer, A. Mihi, L.M. Liz-Marzan, ACS Nano 12, 8531–8535 (2018)CrossRefGoogle Scholar
  41. 41.
    Y. Zhao, Y. Tian, P. Ma, A. Yu, H. Zhang, Y.H. Chen, Anal. Methods 7, 8116–8122 (2015)CrossRefGoogle Scholar
  42. 42.
    C. Kuttner, M. Mayer, M. Dulle, A. Moscoso, J.M. Lopez-Romero, S. Foster, A. Fery, J. Perez-Juste, R. Contreras-Caceres, ACS Appl. Mater. Interfaces 10, 11152–11163 (2018)CrossRefGoogle Scholar
  43. 43.
    M. Tebbe, C. Kuttner, M. Männel, A. Fery, M. Chanana, ACS Appl. Mater. Interfaces 7, 5984–5991 (2015)CrossRefGoogle Scholar
  44. 44.
    K.S. Minioti, C.F. Sakellariou, N.S. Thomaidis, Anal. Chim. Acta 583, 103–110 (2007)CrossRefGoogle Scholar
  45. 45.
    Q.C. Chen, S.F. Mou, X.P. Hou, J.M. Riviello, Z.M.J. Ni, J. Chromatogr. A 827, 73–81 (1998)CrossRefGoogle Scholar
  46. 46.
    Y.Z. Wang, D.P. Wei, H. Yang, Y. Yang, W.W. Xing, Y. Li, A.P. Deng, Talanta 77, 1783–1789 (2009)CrossRefGoogle Scholar
  47. 47.
    Y. Xie, T. Chen, Y. Cheng, H. Wang, H. Qian, W. Yao, Spectrochim. Acta. A 132, 355–360 (2014)ADSCrossRefGoogle Scholar
  48. 48.
    C. Zhu, G. Meng, P. Zheng, Q. Huang, Z. Li, X. Hu, X. Wang, Z. Huang, F. Li, N. Wu, Adv. Mater. 28, 4871–4876 (2016)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.National Key Laboratory of Science and Technology on Tunable LaserHarbin Institute of TechnologyHarbinChina
  2. 2.Physics and Material Engineering ApartmentDalian Nationality UniversityDalianChina

Personalised recommendations