Advertisement

Applied Physics A

, 124:801 | Cite as

Optical properties of novel ASiP2 (A=Ca, Sr) chalcopyrites: first-principle study

  • S. R. ThahirunnisaEmail author
  • I. B. Shameem Banu
Article
  • 62 Downloads

Abstract

We report the electronic and optical properties of the novel ternary ASiP2 (A = Ca, Sr) compounds calculated using the density functional theory (DFT) based on the full potential linearized augmented plane wave (FP-LAPW) method. We calculated the optimized lattice constants (a and c) for both the compounds. The optimized lattice constants were used to calculate the energy band gap and all the optical propeties. The ASiP2 (A=Ca, Sr) chalcopyrites demonstrate the semiconducting behavior with the direct band gap values of 0.97 eV and 0.22 eV in the H–H symmetry direction for CaSiP2 and SrSiP2, respectively. The band gap decreases when Ca is replaced by Sr. There are no experimental results to compare our predicted results. The spectroscopic properties such as total density of states and partial density of states have been discussed in detail. The optical properties such as dielectric function, refractive index, absorption coefficient and optical conductivity were calculated. The predicted results are reported for the first time. Optical properties and the direct band gap of these compounds in the visible region of the electromagnetic energy spectrum ensure their applications in optoelectronic devices.

Notes

Acknowledgements

The authors are thankful to Prof. Peter Blaha and Prof. K. Schwarz of Vienna, Austria, for providing WIEN2k code for the computational work done in this paper.

References

  1. 1.
    A. Amit Soni, B.L. Dashora, R. Ahuja, Pandey, J. Electron. Mater. 40, 11 (2011)CrossRefGoogle Scholar
  2. 2.
    M.I. Ziane, Z. Bensaad, T. Ouahrani, H. Bennacer, Mater. Sci. Semicond. Process. 30, 181–196 (2015)CrossRefGoogle Scholar
  3. 3.
    S. Liwei, Hu Jing, Y. Qin, Y. Duan, L. Wu, X. Yang, G. Tang, J. Alloys Compd. 611, 210–218 (2014)CrossRefGoogle Scholar
  4. 4.
    K. Hadji, A. Abdiche, F. Soyalp, S.Bin Omran, R. Khenata, Optik 130, 1080–1091 (2017)ADSCrossRefGoogle Scholar
  5. 5.
    A.S. Sheetal Sharma, V.K. Verma, B. Jindal, Physica (2014),  https://doi.org/10.1016/j.physb.2013.12.031
  6. 6.
    A.H. Reshak, S. Auluck, Solid State Commun. 145, 571–576 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    B. Xu, X. Li, Z. Qi, C.L.D. Yang, J. Sun, L. Yi, Phys. B 406, 946–951 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    V.L. Shaposhnikov, A.V. Krivosheeva, V.E. Borisenko, Phys. Rev. B 85, 205201 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    S.K. Tripathy, V. Kumar, Mater. Sci. Eng. B 182, 52–58 (2014)CrossRefGoogle Scholar
  10. 10.
    S.G. Murtaza, R. Khenata, A.H. Reshak, Mater. Sci. Semicond. Process. 26, 79–86 (2014)CrossRefGoogle Scholar
  11. 11.
    H. Salehi, E. Gordanian, Mater. Sci. Semicond. Process. 47, 51–56 (2016)CrossRefGoogle Scholar
  12. 12.
    A. Basit, A. Murtaza, A. Mahmood, S.A. Khan, M. Aneel, A. Yar, K.M. Wong, Mater. Sci. Semicond. Process. 57, 116–123 (2017)CrossRefGoogle Scholar
  13. 13.
    S. Fahad, G. Murtaza, T. Ouahrani, R. Khenata, M. Yousaf, S.B. Omran, S. Mohammad, J. Alloys Compd. 646, 211–222 (2015)CrossRefGoogle Scholar
  14. 14.
    K.M. Wong, W. Khan, M. Shoaib, U. Shah, S.H. Khan, G. Murtaza, J. Electron. Mater. 47, 566–576 (2018)ADSCrossRefGoogle Scholar
  15. 15.
    K.M. Wong, S.M. Alay-e-Abbas, Y. Fang, A. Shaukat, Y. Lei, J. Appl. Phys. 114, 034901 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    C. Ambrosch-Draxl, O.J. Sofo, Comput. Phys. Commun. 175, 1–14 (2006)ADSCrossRefGoogle Scholar
  17. 17.
    P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz, (ISBN3-9501031-1-2) (2001)Google Scholar
  18. 18.
    C. Zhou, X. Liu, K. Li, T. Lü, Optik 126, 4731–4734 (2015)ADSCrossRefGoogle Scholar
  19. 19.
    S. Ullah, H.U. Din, G. Murtaza, T. Ouahrani, R. Khenata, S.B. Omran, J. Alloys Compd. 617, 575–583 (2014)CrossRefGoogle Scholar
  20. 20.
    S. Laksari, A. Chahed, N. Abbouni, O. Benhelal, B. Abbar, Comput. Mater. Sci. 38, 223–230 (2006)CrossRefGoogle Scholar
  21. 21.
    H. Ulla, A.H. Reshak, K. Inayat, R. Ali, G. Murtaza, S.A. Sheraz, H.U. Din, Z.A. Alahmedh, J. Optoelectron. Adv. Mater. 16, 1493–1502 (2014)Google Scholar
  22. 22.
    M. Hadja, S. Berrah, H. Abi, M.I. Ziane, H. Bennacer, B.G. Yalcin, Optik 127, 9280–9294 (2016)ADSCrossRefGoogle Scholar
  23. 23.
    K. Kumar, S. Bhatt, A.R. Jani, B.L. Ahuja, Phys. B 478, 138–145 (2015)ADSCrossRefGoogle Scholar
  24. 24.
    R. Gautam, P. Singh, S. Sharma, S. Kumari, A.S. Verma, Superlattices Microstruct. 85, 859–871 (2015)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsB.S. Abdur Rahman Crescent Institute of Science and TechnologyChennaiIndia

Personalised recommendations