Applied Physics A

, 124:802 | Cite as

Synthesis and microwave absorbing properties of SiC nanowires

  • Zhi Gang SunEmail author
  • Sheng Jie Wang
  • Xiao Jing Qiao
  • Yan Li
  • Wang Hui Zheng
  • Peng Ying Bai


SiC nanowires with high microwave absorbing performance have been prepared by one step carbon thermal reduction process with economical activated carbon, silicon and silicon dioxide as raw materials. The characterization and performance of nanowires have been studied by IR, XRD, SEM and VNA analysis. The results indicate that the obtained SiC nanowires are samples with diameter about 40 nm and the length up to several micrometers. The large length-to-diameter ratio heightened the microwave absorbing properties. Electromagnetic parameters were tested with 50% of the titled materials and 50% of paraffin wax composites using HP8722ES vector network analyzer. In addition, the reflection loss property has been obtained on the basis of the transmission line theory. The results indicate that the SiC nanomaterials exhibit a maximum reflection loss of − 18.02 dB with the bandwidth below − 10dB over 1.7 GHz, and two sharp absorbing peaks appear at 4 mm thickness.



We gratefully acknowledge School of Mechatronic Engineering of Beijing Institute of Technology, Institute 206 Second Academy of China Aerospace Science and Industry Corporation and National Key R&D Program of China (No. 2016YFB0401504) for financial support of this project.


  1. 1.
    M.C. LeMieux, M. Roberts, S. Barman, Y.W. Jin, J.M. Kim, Z.N. Bao, Science 321, 101 (2008)ADSCrossRefGoogle Scholar
  2. 2.
    W.C. Li, X.J. Qi, H. Guillard ao, S.M. Zhao, Q.G. Wang, Ren, J. Nanosci. Nanotechnol. 13, 793 (2013)CrossRefGoogle Scholar
  3. 3.
    M. Oyharçabal, T. Olinga, M.P. Foulc, S. Lacomme, E. Gontier, V. Vigneras, Compos. Sci. Technol. 74, 107 (2013)CrossRefGoogle Scholar
  4. 4.
    Y. Li, J. Zhang, Z. Liu, M. Liu, H. Lin, R. Che, J. Mater. Chem. C 2, 5216 (2013)CrossRefGoogle Scholar
  5. 5.
    S.M. Abbas, A.K. Dixita, R. Chatterjee, T.C. Goel, J. Magn. Magn. Mater. 309, 20 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    T. Kagotani, D. Fujiwara, S. Sugimoto, K. Inomata, M. Homma, J. Magn. Magn. Mater. 272–276, 1813 (2004)CrossRefGoogle Scholar
  7. 7.
    R.B. Wu, K. Zhou, Z.H. Yang, X.K. Qian, J. Wei, L. Liu, Y.Z. Huang, L.B. Kong, L.Y. Wang, Cryst. Eng. Comm. 15, 570 (2001)CrossRefGoogle Scholar
  8. 8.
    J. Ding, C.J. Deng, W.J. Yu, H.X. Zhu, X.J. Zhang, Ceram. Int. 40, 4001 (2014)CrossRefGoogle Scholar
  9. 9.
    S. Motojima, S. Hoshiya, Y. Hishikawa, Carbon 41, 2658 (2003)CrossRefGoogle Scholar
  10. 10.
    S. Zahra, A.N. Amir, J.K. Roozbeh, K. Ebrahim, J. Mater. Sci. Technol. 29, 255 (2013)Google Scholar
  11. 11.
    T. Masahiro, S. Masao, M. Fumiyoshi, Kenichi, J. Appl. Phys. 108, 063911 (2010)CrossRefGoogle Scholar
  12. 12.
    W.C. Li, X.J. Qiao, M.Y. Li, T. Liu, Peng, Mater. Res. Bull. 48, 4449 (2013)CrossRefGoogle Scholar
  13. 13.
    J. Liu, J. Cheng, R. Che, J. Xu, M. Liu, Z. Liu, ACS Appl. Mater. Interfaces 5, 2503 (2013)CrossRefGoogle Scholar
  14. 14.
    S.L. Wen, Y. Liu, X.C. Zhao, J. Phys. D: Appl. Phys. 48, 405001 (2015)CrossRefGoogle Scholar
  15. 15.
    R. Zulhijah, K. Yoshimia, A.B.D. Nandiyanto, T. Ogia, T. Iwaki, K. Nakamura, K. Okuyamaa, Adv. Powder Technol. 25, 582 (2014)CrossRefGoogle Scholar
  16. 16.
    J.M. Zhao, W.X. An, D.A. Li, X. Yang, Synthetic Met 161, 2144 (2011)CrossRefGoogle Scholar
  17. 17.
    G. Namita, S. Kuldeep, O. Anil, D.P. Singh, S.K. Dhawan, Compos. Sci. Technol. 71, 1754 (2011)CrossRefGoogle Scholar
  18. 18.
    F. Guillard, A. Allemand, J.D. Lulewicz, J. Galy, J. Eur. Ceram. Soc. 27, 2725 (2007)CrossRefGoogle Scholar
  19. 19.
    Z.H. He, R. Tu, K. Hirokazu, G. Takashi, Ceram. Int. 39, 2605 (2013)CrossRefGoogle Scholar
  20. 20.
    B. Zhao, H.J. Zhang, H.H. Tao, Z.J. Tan, Z. Jiao, M.H. Wu, Mater. Lett. 65, 1552 (2011)CrossRefGoogle Scholar
  21. 21.
    T. Li, L.Q. Xu, L.C. Wang, L.S. Yang, Y.T. Qian, J. Alloy. Compd. 9, 341 (2009)CrossRefGoogle Scholar
  22. 22.
    H. Tian, H.T. Liu, H.F. Cheng, Powder Technol. 5, 374–80 (2013)CrossRefGoogle Scholar
  23. 23.
    L.H. Wang, Y. Peng, X.B. Hu, X.G. Xu, Ceram. Int. 8, 6867 (2013)CrossRefGoogle Scholar
  24. 24.
    B.M. Moshtaghioun, R. Poyato, F.L. Cumbrera, S. de BernardiMartin, A. Monshi, M.H. Abbasi, F. Karimzadeh, A.D. Rodriguez, J. Eur. Ceram. Soc. 7, 1787 (2012)CrossRefGoogle Scholar
  25. 25.
    N. Cocera, N.R. de Esparza, I. Ocaña, J.M. Sanchez, J. Eur. Ceram. Soc. 6, 1155 (2011)CrossRefGoogle Scholar
  26. 26.
    M. Yazdanfar, P. Stenberg, I.D. Booker, J. Cryst. Growth 10, 55 (2013)ADSCrossRefGoogle Scholar
  27. 27.
    Y. Zhanna, M. Zulkhair, M. Alexander, Ceram. Int. 12, 2297 (2010)Google Scholar
  28. 28.
    Y.W. Li, Q.H. Wang, H.B. Fan, S.B. Sang, Y.B. Li, L. Zhao, Ceram. Int. 40, 1481 (2014)CrossRefGoogle Scholar
  29. 29.
    M. Chu, M.L. Qin, D. Li, H.Y. Wu, Z.Q. Cao, X.H. Qu, Mater. Chem. Phys. 4, 560 (2014)CrossRefGoogle Scholar
  30. 30.
    X.F. Du, T. Gao, D.K. Li, Y.Y. Wu, X.F. Liu, J. Alloys Compd. 3, 374 (2014)CrossRefGoogle Scholar
  31. 31.
    L.Z. Cao, H. Jiang, H. Song, X. Liu, W.G. Guo, S.Z. Yu, Z.M. Li, G.Q. Miao, Solid State Commun. 150, 794 (2010)ADSCrossRefGoogle Scholar
  32. 32.
    Y.J. Lu, Y.M. Wang, Z.D. Pan et al., Ceram. Inter. 39, 4421 (2013)CrossRefGoogle Scholar
  33. 33.
    Z.G. Sun, X.J. Qiao, Q.G. Ren, X.D. Guo et al., Adv. Powder Tech. 27, 1552 (2016)CrossRefGoogle Scholar
  34. 34.
    Y.J. Hao, J.B. Wagner, D.S. Su et al., Nanotechnology 17, 2870 (2006)ADSCrossRefGoogle Scholar
  35. 35.
    J.S. Lee, Y.K. Byeun, S.H. Lee et al., J. Alloys. Compd. 456, 257 (2008)CrossRefGoogle Scholar
  36. 36.
    G.Y. Yang, R.B. Wu, J.J. Chen, Y. Pan, R. Zhai, L.L. Wu, J. Lin, Nanotechnology. 18, 155601 (2007)ADSCrossRefGoogle Scholar
  37. 37.
    B.S. Li, R.B. Wu, Y. Pan, J. Alloys Compd. 462, 446 (2008)CrossRefGoogle Scholar
  38. 38.
    J.M.Pan Cheng, X.N.,X.H. Yan, J.F. Pan, C.H. Zhang, Q.B. Lu, Ceram. Int. 39, 6131 (2013)CrossRefGoogle Scholar
  39. 39.
    W. Gruner, S. Stolle, K. Wetzig, Int. J. Ref. Metals Hard Mater 18, 137 (2000)CrossRefGoogle Scholar
  40. 40.
    K. Senthil, K. Yong, Mater. Chem. Phys. 112, 88 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Second Academy of China Aerospace Science and Industry Corporation, 0086100039BeijingChina
  2. 2.School of Mechatronic EngineeringBeijing Institute of Technology, 0086100081BeijingChina

Personalised recommendations