Advertisement

Synthesis of graphitic carbon nitride via direct polymerization using different precursors and its application in lithium–sulfur batteries

  • 399 Accesses

  • 5 Citations

Abstract

The graphitic carbon nitride (g-C3N4) materials were prepared via direct polymerization of urea, melamine, thiourea, and dicyandiamide at the same conditions, respectively. The samples were tested by various characterization tools, so that to study the influences of precursors on the physical and electrochemical properties of g-C3N4. The results showed that the as-prepared U-CN (from urea), M-CN (from melamine), T-CN (from thiourea), and D-CN (from dicyandiamide) exhibited significantly different microstructures. The synthesized g-C3N4 powders were used as sulfur matrixes for lithium–sulfur batteries. The electrochemical properties revealed that urea-derived C3N4 showed the highest initial capacity of 1207 mAh g−1. Furthermore, it possesses excellent cycling stability for 500 cycles and remains capacity of 517 mAh g−1 at 0.37 mA cm−2. This work could provide a new perspective for the selection of proper precursors and the in-depth study of the electrochemical behaviors of the microstructure of g-C3N4.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    G. Jeong, Y.U. Kim, H. Kim, Y.J. Kim, H.J. Sohn, Prospective materials and applications for Li secondary batteries. Energy Environ. Sci 4, 1986–2002 (2011)

  2. 2.

    K.A. Kurilenko, O.A. Shlyakhtin, O.A. Brylev, D.I. Petukhov, A.V. Garshev, Effect of nanostructured carbon coatings on the electrochemical performance of Li1.4Ni0.5Mn0.5O2+x-based cathode materials. Beilstein J. Nanothechnol. 7, 1960–1970 (2016)

  3. 3.

    J.Q. Li, C. Han, M.X. Jing, H. Yang, X.Q. Shen, S.B. Qin, Flake-like oxygen-deficient lithium vanadium oxides as a high ionic and electronic conductive cathode materials for high power Li-ion battery. Appl. Phys. A 124, 450 (2018)

  4. 4.

    B.Y. Sun, Q.L. Liu, W.S. Chen, N. Wang, J.J. Gu, W. Zhang, H.L. Su, D. Zhang, Micron-sized encapsulated-type MoS2/C hybrid particles with an effective confinement effect for improving the cycling performance of LIB anodes. J. Mater. Chem. A 6, 6289–6298 (2018)

  5. 5.

    N. Wang, Q.L. Liu, B.Y. Sun, J.J. Gu, B.X. Yu, W. Zhang, D. Zhang, N-doped catalytic graphitized hard carbon for high-performance lithium/sodium-ion batteries. Sci. Rep. UK 8, 9934 (2018)

  6. 6.

    D.M. Kang, Q.L. Liu, M. Chen, J.J. Gu, D. Zhang, Spontaneous cross-linking for fabrication of nanohybrids embedded with size-controllable particles. ACS Nano 10, 889–898 (2016)

  7. 7.

    R. Zhuang, S. Yao, M. Jing, X. Shen, T. Li, S. Qin, Synthesis and characterization of electrospun molybdenum dioxide–carbon nanofibers as sulfur matrix additives for rechargeable lithium–sulfur battery applications. Beilstein J. Nanothechnol. 9, 262–270 (2018)

  8. 8.

    J. Liu, W. Li, L. Duan, X. Li, L. Ji, Z. Geng, K. Huang, L. Lu, A graphene-like oxygenated carbon nitride material for improved cycle-life lithium/sulfur batteries. Nano Lett. 15, 5137–5142 (2015)

  9. 9.

    H. Tang, S. Yao, M. Jing, X. Wu, J. Hou, X. Qian, D. Rao, Q. Shen, Nickel fibers/sulfur composites cathode with enhanced electrochemical performance for rechargeable lithium-sulfur batteries. Electrochim. Acta 176, 442–447 (2015)

  10. 10.

    H.L. Lee, Z. Sofer, V. Mazanek, J. Luxa, C.K. Chua, M. Pumera, Graphitic carbon nitride: effects of various precursors on the structural, morphological and electrochemical sensing properties. Appl. Mater. Today 8, 150–162 (2017)

  11. 11.

    L. Ma, K.E. Hendrickson, S. Wei, L.A. Archer, Nanomaterials: Science and applications in the lithium–sulfur battery. Nano Today 10, 315–338 (2015)

  12. 12.

    Q. Pang, X. Liang, C.Y. Kwok, L.F. Nazar, Advances in lithium–sulfur batteries based on multifunctional cathodes and electrolytes. Nat. Energy 1, 16132 (2016)

  13. 13.

    J.L. Hou, S.S. Yao, X. Wu, M.X. Jing, D.W. Rao, X.Q. Shen, X.M. Xi, K.S. Xiao, Fabrication and characterization of non-woven carbon nanofibers as functional interlayer for rechargeable lithium sulfur battery. J. Nanosci. Nanotechnol. 17, 1857–1862 (2017)

  14. 14.

    M. Barghamadi, A.S. Best, A.I. Bhatt, A.F. Hollenkamp, P.J. Mahon, M. Musameh, T. Rjither, Effect of LiNO3 additive and pyrrolidinium ionic liquid on the solid electrolyte interphase in the lithium–sulfur battery. J. Power Sources 295, 212–220 (2015)

  15. 15.

    H.J. Peng, D.W. Wang, J.Q. Huang, X.B. Cheng, Z. Yuan, F. Wei, Q. Zhang, Janus separator of polypropylene-supported cellular graphene framework for sulfur cathodes with high utilization in lithium–sulfur batteries. Adv. Sci. 3, 1500268 (2016)

  16. 16.

    Y.J. Li, J.M. Fan, M.S. Zheng, Q.F. Dong, A novel synergistic composite with multi-functional effects for high-performance Li–S batteries. Energy Environ. Sci. 9, 1998–2004 (2016)

  17. 17.

    X. Liang, C. Hart, Q. Pang, A. Garsuch, T. Weiss, L.F. Nazar, A highly efficient polysulfide mediator for lithium–sulfur batteries. Nat. Commun. 6, 5682 (2015)

  18. 18.

    X.Q. Zhang, B. He, W.C. Li, A.H. Lu, Hollow carbon nanofibers with dynamic adjustable pore sizes and closed ends as hosts for high-rate lithium-sulfur battery cathodes. Nano Res. 11(3), 1238–1246 (2018)

  19. 19.

    H. Li, X. Yang, X. Wang, M. Liu, F. Ye, J. Wang, Y. Zhang, Dense integration of graphene and sulfur through the soft approach for compact lithium/sulfur battery cathode. Nano Energy 12, 468–475 (2015)

  20. 20.

    J. Song, M.L. Gordin, T. Xu, S. Chen, Z. Yu, H. Sohn, D. Wang, Strong lithium polysulfide chemisorption on electroactive sites of nitrogen-doped carbon composites for high-performance lithium–sulfur battery cathodes. Angew. Chem. Int. Ed. 54, 4325–4329 (2015)

  21. 21.

    J.Q. Huang, Z.L. Xu, S. Abouali, M.A. Garakani, J.K. Kim, Porous graphene oxide/carbon nanotube hybrid films as interlayer for lithium-sulfur batteries. Carbon 99, 624–632 (2016)

  22. 22.

    S.S. Yao, S.K. Xue, Y.J. Zhang, X.Q. Shen, X.Y. Qian, T.B. Li, K.S. Xiao, S.B. Qin, J. Xiang, Synthesis, characterization, and electrochemical performance of spherical nanostructure of Magnéli phase Ti4O7. J. Mater. Sci. Mater. Electron. 28, 7264–7270 (2017)

  23. 23.

    K. Chen, Z. Sun, R. Fang, Y. Shi, H.M. Cheng, F. Li, Metal–organic frameworks (MOFs)-derived nitrogen-doped porous carbon anchored on graphene with multifunctional effects for lithium-sulfur batteries. Adv. Funct. Mater. 2018, 1707592 (2018)

  24. 24.

    M. Zhang, C. Yu, C. Zhao, X. Song, X. Han, S. Liu, J. Qiu, Cobalt-embedded nitrogen-doped hollow carbon nanorods for synergistically immobilizing the discharge products in lithium–sulfur battery. Energy Storage Mater. 5, 223–229 (2016)

  25. 25.

    Y. Qiu, W. Li, W. Zhao, G. Li, Y. Hou, M. Liu, S. Yang, High-rate, ultralong cycle-life lithium/sulfur batteries enabled by nitrogen-doped graphene. Nano Lett. 14, 4821–4827 (2014)

  26. 26.

    X. Bu, J. Li, S. Yang, J. Sun, Y. Deng, Y. Yang, G. Ding, Surface modification of C3N4 through oxygen-plasma treatment: a simple way toward excellent hydrophilicity. ACS Appl. Mater. Interfaces 8, 31419–31425 (2016)

  27. 27.

    G. Zhang, C. Huang, X. Wang, Dispersing molecular cobalt in graphitic carbon nitride frameworks for photocatalytic water oxidation. Small 11, 1215–1221 (2015)

  28. 28.

    Z. Zhang, K. Leinenweber, M. Bauer, L.A. Garvie, P.F. McMillan, G.H. Wolf, High-pressure bulk synthesis of crystalline C6N9H3·HCl: a novel C3N4 graphitic derivative. J. Am. Chem. 123, 7788–7796 (2001)

  29. 29.

    H. Xu, J. Yan, Y. Xu, Y. Song, H. Li, J. Xia, H. Wan, Novel visible-light-driven AgX/graphite-like C3N4 (X = Br, I) hybrid materials with synergistic photocatalytic activity. Appl. Catal B Environ. 129, 182–193 (2013)

  30. 30.

    P.K. Chuang, K.H. Wu, T.F. Yeh, H. Teng, Extending the π-conjugation of g-C3N4 by incorporating aromatic carbon for photocatalytic H2 evolution from aqueous solution. ACS Sustain. Chem. Eng. 227, 153–160 (2016)

  31. 31.

    L. Stagi, D. Chiriu, C.M. Carbonaro, R. Corpino, P.C. Ricci, Structural and optical properties of carbon nitride polymorphs. Diam. Relat. Mater. 68, 84–92 (2016)

  32. 32.

    S.S. Yao, S.K. Xue, S. H.Peng, M.X. Jing, X.Y. Qian, X.Q. Shen, T.B. Li, Y.H. Wang, Synthesis of graphitic carbon nitride at different thermal-pyrolysis temperature of urea and it application in lithium sulfur batteries. J. Mater. Sci. Mater. Electron. 29, 17921–17930 (2018)

  33. 33.

    Z. Zeng, H. Yu, X. Quan, S. Chen, S. Zhang, Structuring phase junction between tri-s-triazine and triazine crystalline C3N4 for efficient photocatalytic hydrogen evolution. Appl. Catal. B Environ. 227, 153–160 (2018)

  34. 34.

    M. Zhou, Z. Hou, L. Zhang, Y. Liu, Q. Gao, X. Chen, n/n junctioned g-C3N4 for enhanced photocatalytic H2 generation. Sustain. Energy Fuels 1, 317–323 (2017)

  35. 35.

    Y. Li, Q.L. Liu, D.M. Kang, J.J. Gu, W. Zhang, D. Zhang, Free-drying assisted synthesis of hierarchical porous carbons for high-performance supercapacitors. J. Mater. Chem. A 3, 21016–21022 (2015)

  36. 36.

    S. Panneri, P. Ganguly, B.N. Nair, A.A.P. Mohamed, K.G.K. Warrier, U.N.S. Hareesh, Role of precursors on the photophysical properties of carbon nitride and its application for antibiotic degradation. Environ. Sci. Pollut. R 24, 8609–8618 (2017)

  37. 37.

    F.Y. Zhou, Q.L. Liu, D.M. Kang, J.J. Gu, W. Zhang, D. Zhang, A 3D hierarchical hybrid nanostructure of carbon nanotubes and activated carbon for high-performance supercapacitors. J. Mater. Chem. A 2, 3505–3512 (2014)

  38. 38.

    J. Wang, J. Huang, H. Xie, A. Qu, Synthesis of g-C3N4/TiO2 with enhanced photocatalytic activity for H2 evolution by a simple method. Int. J. Hydrog. 39, 6354–6363 (2014)

  39. 39.

    X. Tao, J. Wang, C. Liu, H. Yao, G. Zheng, C. Zu, Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium–sulfur battery design. Nat. Commun. 7, 11203 (2016)

  40. 40.

    B. Li, C. Han, Y.B. He, C. Yang, H. Du, Q.H. Yang, F. Kang, Facile synthesis of Li4Ti5O12/C composite with super rate performance. Energy Environ. Sci. 5, 9595–9602 (2012)

  41. 41.

    K. Luan, S. Yao, Y. Zhang, R. Zhuang, J. Xiang, X. Shen, S. Qin, Poly (3, 4-ethyleendioxythiophene) coated titanium dioxide nanoparticles in situ synthesis and their application for rechargeable lithium sulfur batteries. Electrochim. Acta 252, 461–469 (2017)

  42. 42.

    P. Mei, X.L. Wu, H. Xie, L. Sun, Y. Zeng, J. Zhang, C. Yao, LiV3O8 nanorods as cathode materials for high-power and long-life rechargeable lithium-ion batteries. RSC Adv. 4, 25494–25501 (2014)

  43. 43.

    H. Tang, S. Yao, S. Xue, M. Liu, L. Chen, M. Jing, X. Shen, T. Li, K. Xiao, S. Qin, In-situ synthesis of carbon@Ti4O7 non-woven fabric as a multifunctional interlayer for excellent lithium sulfur battery. Electrochim. Acta 263, 158–167 (2018)

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 51874146, 51504101), the China Postdoctoral Science Foundation (Grant Nos. 2018T110551, 2017M621640), the Six Talent Peaks Project of Jiangsu Province (XCL-125), the Natural Science Foundation of Jiangsu Province (Grant No. BK20150514), the Natural Science Foundation of Jiangsu Provincial Higher Education of China (Grant No. 15KJB430006), the Start-up Foundation of Jiangsu University for Senior Talents (Grant No. 15JDG014).

Author information

Correspondence to Shanshan Yao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 784 KB)

Supplementary material 2 (AVI 1862 KB)

Supplementary material 2 (AVI 1862 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yao, S., Xue, S., Peng, S. et al. Synthesis of graphitic carbon nitride via direct polymerization using different precursors and its application in lithium–sulfur batteries. Appl. Phys. A 124, 758 (2018). https://doi.org/10.1007/s00339-018-2189-x

Download citation