Applied Physics A

, 124:747 | Cite as

Enhancement of thermoelectric performance of Cu1.98Se by Pb doping

  • Zheng Zhu
  • Yuewen Zhang
  • Hongzhang SongEmail author
  • Xin-Jian LiEmail author


Non-stoichiometric Cu2−xSe is considered as a potential “phonon liquid electronic crystal” thermoelectric material. Cu1.98Se has higher thermal conductivity than Cu2Se, but the power factor of Cu1.98Se is about twice that of Cu2Se. Its thermal conductivity could be further depressed by optimizing its thermal transport performance. In this work, lead-doped Cu1.98−xPbx/2Se (x = 0–0.03) nanopowders were synthesized using a hydrothermal method, and hot-pressed into bulk pellets to assess the effects of Pb doping on the thermoelectric properties of Cu1.98Se. The electrical resistivity and the Seebeck coefficients were increased by Pb doping. Ionization impurity scattering, together with decrease of hole concentration, appeared to decrease the electrical transport performance. The point defects and reduced carrier concentration together result in low thermal conductivity and lead to a high dimensionless figure of merit (ZT) value of 1.52 at 973 K for the nominal component Cu1.95Pb0.015Se sample.



This study was supported by the National Natural Science Foundation of China (Grant No. 61774136), the China and Henan Postdoctoral Science Foundation (Grant Nos. 2017M620303 and 2018M630833), and the Key Programs for Science and Technology Development of Henan Province (Grant Nos. 182102210183 and 182102210594).


  1. 1.
    L.E. Bell, Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321, 1457–1461 (2008)CrossRefADSGoogle Scholar
  2. 2.
    R. Fitriani, B.D. Ovik, M.C. Long, M. Barma, M.F.M. Riaz, S.M. Sabri, R. Said, Saidur, A review on nanostructures of high-temperature thermoelectric materials for waste heat recovery. Renew. Sustain. Energy Rev. 64, 635–659 (2016)CrossRefGoogle Scholar
  3. 3.
    Z.-G. Chen, X. Shi, L.-D. Zhao, J. Zou, High-performance SnSe thermoelectric materials: progress and future challenge. Prog. Mater. Sci. 97, 283–346 (2018)CrossRefGoogle Scholar
  4. 4.
    L. Yang, Z.-G. Chen, M.S. Dargusch, J. Zou, High performance thermoelectric materials: progress and their applications. Adv. Energy Mater. 8, 1701797 (2018)CrossRefGoogle Scholar
  5. 5.
    H. Liu, X. Shi, F. Xu, L. Zhang, W. Zhang, L. Chen, Q. Li, C. Uher, T. Day, G.J. Snyder, Copper ion liquid-like thermoelectrics. Nat. Mater. 11, 422–425 (2012)CrossRefADSGoogle Scholar
  6. 6.
    G. Dennler, R. Chmielowski, S. Jacob, F. Capet, P. Roussel, S. Zastrow, K. Nielsch, I. Opahle, G.K.H. Madsen, Are binary copper sulfides/selenides really new and promising thermoelectric materials? Adv. Energy Mater. 4, 1301581 (2014)CrossRefGoogle Scholar
  7. 7.
    P. Qiu, M.T. Agne, Y. Liu, Y. Zhu, H. Chen, T. Mao, J. Yang, W. Zhang, S.M. Haile, W.G. Zeier, J. Janek, C. Uher, X. Shi, L. Chen, G.J. Snyder, Suppression of atom motion and metal deposition in mixed ionic electronic conductors. Nat. Commun. 9, 2910 (2018)CrossRefADSGoogle Scholar
  8. 8.
    Y.-Q. Tang, Z.-H. Ge, Y.-X. Chen, P. Qin, J. Feng, J. He, Thermoelectric properties of Cu2Sex prepared by solution phase methods and spark plasma sintering. J. Eur. Ceram. Soc. 37, 4687–4692 (2017)CrossRefGoogle Scholar
  9. 9.
    K. Zhao, M. Guan, P. Qiu, A.B. Blichfeld, E. Eikeland, C. Zhu, D. Ren, F. Xu, B.B. Iversen, X. Shi, L. Chen, Thermoelectric properties of Cu2Se1–xTex solid solutions. J. Mater. Chem. A 6, 6977–6986 (2018)CrossRefGoogle Scholar
  10. 10.
    K. Zhao, P. Qiu, Q. Song, A.B. Blichfeld, E. Eikeland, D. Ren, B. Ge, B.B. Iversen, X. Shi, L. Chen, Ultrahigh thermoelectric performance in Cu2–ySe0.5S0.5 liquid-like materials. Mater. Today Phys. 1, 14–23 (2017)CrossRefGoogle Scholar
  11. 11.
    D.G. Cahill, R.O. Pohl, Lattice vibrations and heat transport in crystals and glasses. Annu. Rev. Phys. Chem. 39, 93–121 (1988)CrossRefADSGoogle Scholar
  12. 12.
    B. Yu, W.S. Liu, S. Chen, H. Wang, H.Z. Wang, G. Chen, Z.F. Ren, Thermoelectric properties of copper selenide with ordered selenium layer and disordered copper layer. Nano Energy 1, 472–478 (2012)CrossRefGoogle Scholar
  13. 13.
    X.-X. Xiao, W.-J. Xie, X.-F. Tang, Q.-J. Zhang, Phase transition and high temperature thermoelectric properties of copper selenide Cu2–xSe (0 ≤ x ≤ 0.25). Chin. Phys. B 20, 087201 (2011)CrossRefADSGoogle Scholar
  14. 14.
    L. Yang, Z.-G. Chen, G. Han, M. Hong, J. Zou, Impacts of Cu deficiency on the thermoelectric properties of Cu2–xSe nanoplates. Acta Mater. 113, 140–146 (2016)CrossRefGoogle Scholar
  15. 15.
    J. Yu, K. Zhao, P. Qiu, X. Shi, L. Chen, Thermoelectric properties of copper-deficient Cu2–xSe (0.05 ≤ x ≤ 0.25) binary compounds. Ceram. Int. 43, 11142–11148 (2017)CrossRefGoogle Scholar
  16. 16.
    F. Gao, S.L. Leng, Z. Zhu, X.J. Li, X. Hu, H.Z. Song, Preparation and thermoelectric properties of Cu2Se hot-pressed from hydrothermal synthesis nanopowders. J. Electron. Mater. 47, 2454–2460 (2018)CrossRefADSGoogle Scholar
  17. 17.
    W. Gao, H. Chai, F. Wu, X. Li, X. Hu, H. Song, Enhanced thermoelectric properties of CNT dispersed and Na-doped Bi2Ba2Co2Oy composites. Ceram. Int. 43, 5723–5727 (2017)CrossRefGoogle Scholar
  18. 18.
    W. Gao, G. Wang, X. Li, X. Hu, H. Song, Improved thermoelectric properties of hole-doped Bi2 – xNaxBa2Co2Oy ceramics. Int. J. Mod. Phys. B 31, 1750042 (2017)CrossRefADSGoogle Scholar
  19. 19.
    Q. Hu, K. Wang, Y. Zhang, X. Li, H. Song, Enhanced thermoelectric properties of nano SiC dispersed Bi2Sr2Co2Oy ceramics. Mater. Res. Express 5, 045510 (2018)CrossRefADSGoogle Scholar
  20. 20.
    L. Yao, F. Wu, X.X. Wang, R.J. Cao, X.J. Li, X. Hu, H.Z. Song, Effects of thallium doping on the transport properties of Bi2Te3 alloy. J. Electron. Mater. 45, 3053–3058 (2016)CrossRefADSGoogle Scholar
  21. 21.
    J.L. Lan, Y.C. Liu, B. Zhan, Y.H. Lin, B. Zhang, X. Yuan, W. Zhang, W. Xu, C.W. Nan, Enhanced thermoelectric properties of Pb-doped BiCuSeO ceramics. Adv. Mater. 25, 5086–5090 (2013)CrossRefGoogle Scholar
  22. 22.
    Z.S. Lin, L. Chen, L.M. Wang, J.T. Zhao, L.M. Wu, A promising mid-temperature thermoelectric material candidate: Pb/Sn-codoped In4PbxSnySe3. Adv. Mater. 25, 4800–4806 (2013)CrossRefGoogle Scholar
  23. 23.
    Y.B. Chen, X.L. Cao, R.X. Ma, F. Gao, X. Hu, H.Z. Song, Enhanced thermoelectric properties of hole-doped Lu1–xPbxBaCo4O7 ceramics. J. Electron. Mater. 44, 3545–3549 (2015)CrossRefADSGoogle Scholar
  24. 24.
    Y. Chen, R. Ma, K. Wang, F. Gao, X. Hu, H. Song, Thermoelectric properties of hole-doped Yb1 – xPbxBaCo4O7 + δ ceramics. Int. J. Mod. Phys. B 29, 1550082 (2015)CrossRefADSGoogle Scholar
  25. 25.
    J. Liu, P. Wang, M. Wang, R. Xu, J. Zhang, J. Liu, D. Li, N. Liang, Y. Du, G. Chen, G. Tang, Achieving ZT = 2.2 with Pb and Zn codoped polycrystalline SnSe via phase separation and nanostructuring strategies. Nano Energy 53, 683–689 (2018)CrossRefGoogle Scholar
  26. 26.
    R. Cao, E. Li, Q. Hu, Z. Zhu, Y. Zhang, X. Li, X. Hu, H. Song, Enhanced thermoelectric properties of Cu2 – δSe nanopowder dispersed Bi2Ba2Co2Oy ceramics. Appl. Phys. A 124, 669 (2018)CrossRefADSGoogle Scholar
  27. 27.
    F. Wu, Q. He, M. Tang, H. Song, Thermoelectric properties of Tl and I dual-doped Bi2Te3-based alloys. Int. J. Mod. Phys. B 32, 1850123 (2018)CrossRefADSGoogle Scholar
  28. 28.
    R. Cao, H. Song, W. Gao, E. Li, X. Li, X. Hu, Thermoelectric properties of Lu-doped n-type LuxBi2–xTe2.7Se0.3 alloys. J. Alloys Compd. 727, 326–331 (2017)CrossRefGoogle Scholar
  29. 29.
    R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A 32, 751–767 (1976)CrossRefADSGoogle Scholar
  30. 30.
    Z. Chen, B. Ge, W. Li, S. Lin, J. Shen, Y. Chang, R. Hanus, G.J. Snyder, Y. Pei, Vacancy-induced dislocations within grains for high-performance PbSe thermoelectrics. Nat. Commun. 8, 13828 (2017)CrossRefADSGoogle Scholar
  31. 31.
    L.L. Zhao, X.L. Wang, J.Y. Wang, Z.X. Cheng, S.X. Dou, J. Wang, L.Q. Liu, Superior intrinsic thermoelectric performance with ZT of 1.8 in single-crystal and melt-quenched highly dense Cu2–xSe bulks. Sci. Rep. 5, 7671 (2015)CrossRefGoogle Scholar
  32. 32.
    E. Eikeland, A.B. Blichfeld, K.A. Borup, K. Zhao, J. Overgaard, X. Shi, L. Chen, B.B. Iversen, Crystal structure across the beta to alpha phase transition in thermoelectric Cu2–xSe. IUCrJ 4, 476–485 (2017)CrossRefGoogle Scholar
  33. 33.
    B. Gahtori, S. Bathula, K. Tyagi, M. Jayasimhadri, A.K. Srivastava, S. Singh, R.C. Budhani, A. Dhar, Giant enhancement in thermoelectric performance of copper selenide by incorporation of different nanoscale dimensional defect features. Nano Energy 13, 36–46 (2015)CrossRefGoogle Scholar
  34. 34.
    D.R. Brown, T. Day, K.A. Borup, S. Christensen, B.B. Christensen, G.J. Snyder, Phase transition enhanced thermoelectric figure-of-merit in copper chalcogenides. Apl Mater. 1, 052107 (2013)CrossRefADSGoogle Scholar
  35. 35.
    D.-D. Liang, Z.-H. Ge, H.-Z. Li, B.-P. Zhang, F. Li, Enhanced thermoelectric property in superionic conductor Bi-doped Cu1.8S. J. Alloys Compd. 708, 169–174 (2017)CrossRefGoogle Scholar
  36. 36.
    M.S. Dresselhaus, G. Chen, M.Y. Tang, R.G. Yang, H. Lee, D.Z. Wang, Z.F. Ren, J.P. Fleurial, P. Gogna, New directions for low-dimensional thermoelectric materials. Adv. Mater. 19, 1043–1053 (2007)CrossRefGoogle Scholar
  37. 37.
    F. Frank, Dislocations and point defects. Discuss. Faraday Soc. 23, 122–127 (1957)CrossRefGoogle Scholar
  38. 38.
    X. Zhang, L.-D. Zhao, Thermoelectric materials: energy conversion between heat and electricity. J. Materiomics 1, 92–105 (2015)CrossRefGoogle Scholar
  39. 39.
    J.F. Li, W.S. Liu, L.D. Zhaou, M. Zhou, High-performance nanostructured thermoelectric materials. Npg Asia Mater. 2, 152–158 (2010)CrossRefGoogle Scholar
  40. 40.
    E. Li, S. Wang, Z. Zhu, R. Cao, X. Hu, H. Song, Enhanced thermoelectric properties of Hg-doped Cu2Se. Int. J. Mod. Phys. B 32, 1850087 (2018)CrossRefADSGoogle Scholar
  41. 41.
    F. Gao, X. Du, F. Wu, X. Li, X. Hu, H. Song, Thermoelectric properties of Cu2Se/xNi0.85Se hot-pressed from hydrothermal synthesis nanopowders. Mod. Phys. Lett. B 31, 1750093 (2017)CrossRefADSGoogle Scholar
  42. 42.
    P. Peng, Z.N. Gong, F.S. Liu, M.J. Huang, W.Q. Ao, Y. Li, J.Q. Li, Structure and thermoelectric performance of β-Cu2Se doped with Fe, Ni, Mn, In, Zn or Sm. Intermetallics 75, 72–78 (2016)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Material Physics of Ministry of Education, School of Physics and EngineeringZhengzhou UniversityZhengzhouChina

Personalised recommendations