Applied Physics A

, 124:810 | Cite as

Characterization of nano-crystalline Ti–W–N thin films for diffusion barrier application: a structural, microstructural, morphological and mechanical study

  • Reza Jalali
  • Mojtaba ParhizkarEmail author
  • Hassan Bidadi
  • Hamid Naghshara
  • Mohamad Javad Eshraghi


Ti–W–N thin films with various W contents are deposited on the glass and 304 steel substrates, kept at 150 °C, using the reactive magnetron co-sputtering system. The films were deposited with simultaneous sputtering of Ti and W targets where they powered by DC and RF sources, respectively. The effect of W content on the structure, microstructure and mechanical properties of Ti–W–N thin films are investigated by X-ray diffraction (XRD), field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy (EDX), atomic force microscopy (AFM) and nanoindentation tester. The results show that all films have NaCl-type structure with (200) or (111) preferred orientation, depending on the W content. Furthermore, cross-sectional images corroborate the formation of columnar structure and reduction in distance between the columns with increasing W content. The grains’ size calculated from XRD patterns and SEM micrographs revealed that increasing W content results in increasing their values in the films. Study of the surface morphology and the surface roughness of the films confirm the increase of surface roughness as a function of W content, and this is in agreement with the increase seen in the grain size. Incorporation of W to Ti–N system results in dramatic reduction in electrical resistivity. Addition of W to the films has significant effects on the film stoichiometry. With increasing RF power, the hardness of the films increases and reaches a maximum value of about 26.5 GPa at a RF power of 80 W while in higher values of power the hardness decreases.


  1. 1.
    J.M. Oparowski, R.D. Sisson Jr., R.R. Biederman, The effects of processing parameters on the microstructure and properties of sputter-deposited TiW thin film diffusion barriers. Thin Solid Films. 153, 313–328 (1987). ADSCrossRefGoogle Scholar
  2. 2.
    M. Fugger, M. Plappert, C. Schäffer, O. Humbel, H. Hutter, H. Danninger, M. Nowottnick, Comparison of WTi and WTi(N) as diffusion barriers for Al and Cu metallization on Si with respect to thermal stability and diffusion behavior of Ti. Microelectron. Reliab. 54, 2487–2493 (2014). CrossRefGoogle Scholar
  3. 3.
    A.J.M.N.A.G. Dirks, R.A.M. Wolters, On the microstructure-property relationship of W–Ti–(N) diffusion barriers. Thin Solid Films 193/194, 201–210 (1990)ADSCrossRefGoogle Scholar
  4. 4.
    S. Zhou, W. Liu, H. Liu, C. Cai, Structural and electrical properties of Ti–W–N thin films deposited by reactive RF sputtering. Phys. Procedia. 18, 66–72 (2011). ADSCrossRefGoogle Scholar
  5. 5.
    J.C. Caicedo, L. Yate, J. Montes, Improving the physicochemical surface properties on AISI D3 steel coated with Ti–W–N. Surf. Coat. Technol. 205, 2947–2953 (2011). CrossRefGoogle Scholar
  6. 6.
    B. Tian, W. Yue, Z. Fu, Y. Gu, C. Wang, J. Liu, Microstructure and tribological properties of W-implanted PVD TiN coatings on 316L stainless steel, Vacuum. 99 (2014) 68–75. ADSCrossRefGoogle Scholar
  7. 7.
    L. Yu, J. Chen, H. Ju, H. Dong, H. Zhao, Influence of Al content on microstructure, mechanical and tribological properties of Ti–W–Al–N composite films. Vacuum. 137, 31–37 (2017). ADSCrossRefGoogle Scholar
  8. 8.
    V.F.B.L.R. Shaginyan, M. Misina, J. Zemek, J. Musil, F. Regent, Composition, structure, microhardness and residual stress of W–Ti–N films deposited by reactive magnetron sputteringle. Thin Solid Films 408, 136–147 (2002)ADSCrossRefGoogle Scholar
  9. 9.
    E.K.A.N. Kuchuk, V.P. Kladko, V.F. Machulin, A. Piotrowska, Diffusion barrier properties of reactively sputtered W–Ti–N thin films, Rev. Adv. Mater. Sci. 8, 22–26 (2004)Google Scholar
  10. 10.
    A.V.K.L.R. Shaginyan, Mechanisms for hardening film materials: W–Ti–N and TiN–Cu systems as examples. Powder Metall. Met. Ceram. 44, 161–168 (2005)CrossRefGoogle Scholar
  11. 11.
    D. Braga, J.P. Dias, A. Cavaleiro, Duplex treatment: W–Ti–N sputtered coatings on pre-nitrided low and high alloy steels. Surf. Coat. Technol. 200, 4861–4869 (2006). CrossRefGoogle Scholar
  12. 12.
    V. Severo, L. Vilhena, P.N. Silva, J.P. Dias, D. Becker, S. Wagner, A. Cavaleiro, Tribological behaviour of W–Ti–N coatings in semi-industrial strip-drawing tests. J. Mater. Process. Technol. 209, 4662–4667 (2009). CrossRefGoogle Scholar
  13. 13.
    P. Homhuan, J. Pongsopa, Structural and mechanical properties of Ti–WN thin films by dual unbalanced magnetron sputtering, Adv. Mater. Res. 1131 (2015) 246–250. CrossRefGoogle Scholar
  14. 14.
    C.W.J.H. Moser, F. Tian, O. Haller, D.B. Bergstrom, I. Petrov, J.E. Greene, Single-phase polycrystalline Til_xWxN alloys (0⩽ x⩽ 0.7) grown by UHV reactive magnetron sputtering: microstructure and physical properties. Thin Solid Films. 253, 445–450 (1994)ADSCrossRefGoogle Scholar
  15. 15.
    M.R. Baklanov, P.S. Ho, E. Zschech (eds.), Advanced interconnects for ULSI technology (Wiley, United Kingdom, 2012)Google Scholar
  16. 16.
    W. Qingxiang, L. Shuhua, W. Xianhui, F. Zhikang, Diffusion barrier performance of amorphous WTiN films in Cu metallization. Vacuum. 84, 1270–1274 (2010). ADSCrossRefGoogle Scholar
  17. 17.
    J.C. Caicedo, L. Yate, G. Cabrera, W. Aperador, G. Zambrano, P. Prieto, Effect of negative bias voltage on mechanical and electrochemical nature in Ti–W–N coatings. J. Mater. Sci. 46, 1244–1252 (2011). ADSCrossRefGoogle Scholar
  18. 18.
    R.F. Londoño-Menjura, R. Ospina, D. Escobar, J.H. Quintero, J.J. Olaya, A. Mello, E. Restrepo-Parra, Influence of deposition temperature on WTiN coatings tribological performance. Appl. Surf. Sci. 427, 1096–1104 (2018). ADSCrossRefGoogle Scholar
  19. 19.
    N.D. Cuong, D.-J. Kim, B.-D. Kang, S.-G. Yoon, Effects of nitrogen concentration on structural and electrical properties of titanium nitride for thin-film resistor applications, Electrochem. Solid-State Lett. 9, G279 (2006). CrossRefGoogle Scholar
  20. 20.
    M.T.V.A. Cavaleiro, B. Trindade, The influence of the addition of a third element on the structure and mechanical properties of transition-metal-based nanostructured hard films: part I—nitrides. Nanostructured Coatings, Springer, New York, 2006CrossRefGoogle Scholar
  21. 21.
    A.V. Kuchuk, V.P. Kladko, O.S. Lytvyn, A. Piotrowska, R.A. Minikayev, R. Ratajczak, Relationship between condition of deposition and properties of W–Ti–N thin films prepared by reactive magnetron sputtering. Adv. Eng. Mater. 8, 209–212 (2006). CrossRefGoogle Scholar
  22. 22.
    N.W.A.A.R. Denton, Vegard’s law. Phys. Rev. A 43, 3161–3164 (1991)ADSCrossRefGoogle Scholar
  23. 23.
    J.P. Zhao, X. Wang, Z.Y. Chen, S.Q. Yang, T.S. Shi, X.H. Liu, Overall energy model for preferred growth of TiN films during filtered arc deposition. J. Phys. D Appl. Phys. 30, 5–12 (1997). ADSCrossRefGoogle Scholar
  24. 24.
    M. Popović, M. Novaković, M. Mitrić, K. Zhang, N. Bibić, Structural, optical and electrical properties of argon implanted TiN thin films. Int. J. Refract. Met. Hard Mater. 48, 318–323 (2015). CrossRefGoogle Scholar
  25. 25.
    N.K. Ponon, D.J.R. Appleby, E. Arac, P.J. King, S. Ganti, K.S.K. Kwa, A. O’Neill, Effect of deposition conditions and post deposition anneal on reactively sputtered titanium nitride thin films. Thin Solid Films. 578, 31–37 (2015). ADSCrossRefGoogle Scholar
  26. 26.
    G. Martinez, V. Shutthanandan, S. Thevuthasan, J.F. Chessa, C.V. Ramana, Effect of thickness on the structure, composition and properties of titanium nitride nano-coatings. Ceram. Int. 40, 5757–5764 (2014). CrossRefGoogle Scholar
  27. 27.
    N. Arshi, J. Lu, Y.K. Joo, C.G. Lee, J.H. Yoon, F. Ahmed, Study on structural, morphological and electrical properties of sputtered titanium nitride films under different argon gas flow. Mater. Chem. Phys. 134, 839–844 (2012). CrossRefGoogle Scholar
  28. 28.
    M.L. Addonizio, A. Castaldo, A. Antonaia, E. Gambale, L. Iemmo, Influence of process parameters on properties of reactively sputtered tungsten nitride thin films. J. Vac. Sci. Technol. A Vac. Surf. Film. 30, 31506 (2012). CrossRefGoogle Scholar
  29. 29.
    M. Wen, Q.N. Meng, W.X. Yu, W.T. Zheng, S.X. Mao, M.J. Hua, Growth, stress and hardness of reactively sputtered tungsten nitride thin films. Surf. Coatings Technol. 205, 1953–1961 (2010). CrossRefGoogle Scholar
  30. 30.
    C. Gu, Z. Sui, Y. Li, H. Chu, S. Ding, Y. Zhao, C. Jiang, The growth of the metallic ZrN x thin films on P-GaN substrate by pulsed laser deposition. Appl. Surf. Sci. 433, 306–311 (2018). ADSCrossRefGoogle Scholar
  31. 31.
    H. Guo, W. Chen, Y. Shan, W. Wang, Z. Zhang, J. Jia, Microstructures and properties of titanium nitride films prepared by pulsed laser deposition at different substrate temperatures. Appl. Surf. Sci. 357, 473–478 (2015). ADSCrossRefGoogle Scholar
  32. 32.
    R. Jalali, M. Parhizkar, H. Bidadi, H. Naghshara, S.R. Hosseini, M. Jafari, Effect of Al content, substrate temperature and nitrogen flow on the reactive magnetron co-sputtered nanostructure in TiAlN thin films intended for use as barrier material in DRAMs. J. Korean Phys. Soc. 66, 978–983 (2015). ADSCrossRefGoogle Scholar
  33. 33.
    R.E. Bunshah (ed), Handbook of hard coatings: deposition technologies, properties and applications. (Noyes Publications, Norwich, 2001)Google Scholar
  34. 34.
    X.X. Zhang, Y.Z. Wu, B. Mu, L. Qiao, W.X. Li, J.J. Li, P. Wang, Thermal stability of tungsten sub-nitride thin film prepared by reactive magnetron sputtering. J. Nucl. Mater. 485, 1–7 (2017). ADSCrossRefGoogle Scholar
  35. 35.
    S.T. Alu, S. Stach, S. Valedbagi, S.M. Elahi, R. Bavadi, Surface morphology of titanium nitride thin films synthesized by DC reactive magnetron sputterin. Mater. Sci. 33, 137–143 (2015). CrossRefGoogle Scholar
  36. 36.
    A. Lahav, K.A. Grim, I.A. Blech, Measurement of thermal expansion coefficients of W, WSi, WN, and WSiN thin film metallizations. J. Appl. Phys. 67, 734–738 (1990). ADSCrossRefGoogle Scholar
  37. 37.
    N.P. Bansal, R.H. Doremus, Handbook of glass properties, Handb. Glas. Prop. (2013) 1–680.
  38. 38.
    Y.R. Luo, Comprehensive handbook of chemical bond energies. CRC press 2007Google Scholar
  39. 39.
    S.S. Firouzabadi, K. Dehghani, M. Naderi, F. Mahboubi, Numerical investigation of sputtering power effect on nano-tribological properties of tantalum-nitride film using molecular dynamics simulation. Appl. Surf. Sci. 367, 197–204 (2016). ADSCrossRefGoogle Scholar
  40. 40.
    K. Khojier, M. Jafarzadeh, H. Savaloni, Z. Dehghani, N. Zare Dehnavi, Influence of argon gas flow on mechanical and electrical properties of sputtered titanium nitride thin films. J. Theor. Appl. Phys. 7, 37–42 (2013). ADSCrossRefGoogle Scholar
  41. 41.
    A.N. Wang, J.H. Huang, H.W. Hsiao, G.P. Yu, H. Chen, Residual stress measurement on TiN thin films by combing nanoindentation and average X-ray strain (AXS) method, Surf. Coatings Technol. 280, 43–49 (2015). CrossRefGoogle Scholar
  42. 42.
    J.C. Oliveira, F. Fernandes, R. Serra, A. Cavaleiro, On the role of the energetic species in TiN thin film growth by reactive deep oscillation magnetron sputtering in Ar/N2. Thin Solid Films. 645, 253–264 (2018). ADSCrossRefGoogle Scholar
  43. 43.
    P. Patsalas, C. Charitidis, S. Logothetidis, The effect of substrate temperature and biasing on the mechanical properties and structure of sputtered titanium nitride thin films. Surf. Coatings Technol. 125, 335–340 (2000). CrossRefGoogle Scholar
  44. 44.
    S.V. Hainsworth, W.C. Soh, The effect of the substrate on the mechanical properties of TiN coatings, Surf. Coatings Technol. 163–164, 515–520 (2003).
  45. 45.
    G.Z. Junhua Xu, H. Luo, H. Ju, L. Yu, Microstructure, mechanical and tribological properties of TaWN composite films. Vacuum. 146, 246–251 (2017)ADSCrossRefGoogle Scholar
  46. 46.
    R.G. Elliman, M.C. Ridgway, Ion beam modification of materials. Elsevier, Amsterdam (1996)Google Scholar
  47. 47.
    D. Sangiovanni, V. Chirita, L. Hultman, Electronic mechanism for toughness enhancement in Ti x M 1-x N (M = Mo and W), Phys. Rev. B (2010) 10.
  48. 48.
    P. Hones, P.E. Schmid, R. Sanjine, M. Diserens, C. Wiemer, F. Le, Electronic states and mechanical properties in transition metal nitrides. Surf. Coat. Technol. 121, 284–290 (1999)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Reza Jalali
    • 1
  • Mojtaba Parhizkar
    • 1
    Email author
  • Hassan Bidadi
    • 1
  • Hamid Naghshara
    • 1
  • Mohamad Javad Eshraghi
    • 2
  1. 1.Department of Condensed matter, Faculty of PhysicsUniversity of TabrizTabrizIran
  2. 2.Department of SemiconductorsMaterials and Energy Research Center (MERC)KarajIran

Personalised recommendations