Advertisement

Applied Physics A

, 124:746 | Cite as

Investigation of structural and electrical properties of Gd3+ ions modified BaZr0.05Ti0.95O3 ceramic

  • G. Nag Bhargavi
  • Ayush Khare
  • Tanmaya Badapanda
  • M. Shahid Anwar
Article
  • 22 Downloads

Abstract

Gadolinium (Gd) doped BaZr0.05Ti0.95O3 ceramic samples with general formula Ba(1−x)Gd2x/3Zr0.05Ti0.95O3 were prepared by the solid state reaction method. The effect of Gd on the structural and dielectric behaviours of BaZr0.05Ti0.95O3 have been studied in detail. X-ray diffraction studies revealed that site substitution by Gd3+ ions had a great impact on the site occupancy of the BaZr0.05Ti0.95O3 pervoskite. The lattice parameters increased up to x = 0.03 followed by a decrease at higher concentration showing both donor and acceptor behaviours of Gd in BaZr0.05Ti0.95O3 matrix. Structural changes were studied by Raman spectroscopy also, which showed the non-linear shifting of the modes with increasing doping concentration. The scanning electron microscopy images showed a drastic modification in grain size with increasing Gd concentration. The effect of substitution of Gd3+ ions in BaZr0.05Ti0.95O3 was investigated by means of dielectric studies and the dielectric behaviour was explained using self-compensation model. The diffusivity in the samples was studied by modified Curie–Weiss law.

References

  1. 1.
    L. Li, B. Zhang, The effect of bimodal model on the ultra-broad temperature stable BaTiO3–Na0.5Bi0.5TiO3–Nb2O5 system. Script. Mater. 114, 170–174 (2016)CrossRefGoogle Scholar
  2. 2.
    B. Tang, S. Zhang, X. Zhou, Y. Yuan, L. Yang, Preparation and modification of high Curie point BaTiO3-based X9R ceramics. J. Electroceram. 25, 93–97 (2010)CrossRefGoogle Scholar
  3. 3.
    S.C. Jeon, B.K. Yoon, K.H. Kim, S.J.L. Kang, Effects of core/shell volumetric ratio on the dielectric-temperature behavior of BaTiO3. J. Adv. Ceram. 3(1), 76–82 (2014)CrossRefGoogle Scholar
  4. 4.
    M.K. Mahata, T. Koppe, T. Mondal, C. Brüsewitz, K. Kumar, V.K. Rai, H. Hofsäss, U. Vetter, Incorporation of Zn2+ ions into BaTiO3:Er3+/Yb3+ nanophosphor: an effective way to enhance upconversion, defect luminescence and temperature sensing. Phys. Chem. Chem. Phys. 17, 20741–20753 (2015)CrossRefGoogle Scholar
  5. 5.
    M.S. Alkathy, R. Gayam, K.C.J. Raju, Effect of nickel and lithium co-substituted barium titanate ceramics on structural and dielectric properties, J. Mater. Sci. Mater Electron.  https://doi.org/10.1007/s10854-016-5714-8 Google Scholar
  6. 6.
    F. Zhou, L. Wu, N. Liu, Y. Teng, Y. Li, J. Wen, X. Ren, Phase structure and electrical properties of (0.8 – x) BaTiO3–0.2Bi0.5Na0.5TiO3−xBaZrO3 lead-free piezoceramics. J Alloys Compd. 512(1), 52–56 (2012)CrossRefGoogle Scholar
  7. 7.
    B. Garbarz-Glos, W. Bąk, M. Antonova, A. Budziak, K. Bormanis, C. Kajtoch, Preparation and electric properties of barium zirconium titanate ceramic. Ferroelectrics 485(1), 173–178 (2015)CrossRefGoogle Scholar
  8. 8.
    H. Ghayour, M. Abdellahi, A brief review of the effect of grain size variation on the electrical properties of BaTiO3-based ceramics. Powd. Tech. 292, 84–93 (2016)CrossRefGoogle Scholar
  9. 9.
    H. Ueoka, The doping effects of transition elements on the PTC anomaly of semiconductive ferroelectric ceramics. Ferroelectrics 7, 351–356 (1974)CrossRefGoogle Scholar
  10. 10.
    H. Ikushima, S. Hayakawa, Nat. Tech. Rep. 13, 209–216 (1967)Google Scholar
  11. 11.
    M. Ganguly, S.K. Rout, C.W. Ahn, I.W. Kim, M. Kar, Structural, electrical and optical properties of Ba(Ti1–xYb4x/3)O3 ceramics. Ceram. Int. 39(8), 9511–9524 (2013)CrossRefGoogle Scholar
  12. 12.
    S.B. Reddy, K.P. Rao, M.S. Ramachandra Rao, Influence of A-site Gd doping on the microstructure and dielectric properties of Ba(Zr0.1Ti0.9)O3 ceramics. J. Alloys Compd. 509, 1266–1270 (2011)CrossRefGoogle Scholar
  13. 13.
    K. Alioune, A.G. Laidoudi, A. Simon, J. Ravez, Study of new relaxor materials in BaTiO3–BaZrO3–La2/3TiO3 system. Sol. Stat. Sci. 7, 1324–1332 (2005)ADSCrossRefGoogle Scholar
  14. 14.
    R. Sagar, P. Hudge, S. Madolappa, A.C. Kumbharkhane, R.L. Raibagkar, Electrical properties and microwave dielectric behavior of holmium substituted barium zirconium titanate ceramics. J. Alloys Compd. 537, 197–202 (2012)CrossRefGoogle Scholar
  15. 15.
    R. Sagar, R.L. Raibagkar, Complex impedance and modulus studies of cerium doped barium zirconium titanate solid solution. J. Alloys Compd. 549, 206–212 (2013)CrossRefGoogle Scholar
  16. 16.
    Y. Zhang, J. Hao, C.L. Mak, X. Wei, Effects of site substitutions and concentration on upconversion luminescence of Er3+-doped perovskite titanate. Opt. Exp. 19(3), 1824–1829 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    P. Yongping, Y. Wenhu, C. Shoutian, Influence of rare earths on electric properties and microstructure of barium titanate ceramics. J. Rare Earth 25(1), 154–157 (2007)CrossRefGoogle Scholar
  18. 18.
    L. Ben, D.C. Sinclair, Anomalous Curie temperature behavior of A-site Gd-doped BaTiO3 ceramics: the influence of strain. Appl. Phys. Lett. 98, 092907 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    J. Wu, L.P. Li, W.T.P. Espinosa, S.M. Haile, Defect chemistry and transport properties of BaxCe0.85M0.15O3-δ. J. Mater. Res. 19(8), 2366–2376 (2004)ADSCrossRefGoogle Scholar
  20. 20.
    Y. Tsur, A. Hitomi, I. Scrymgeour, C.A. Randall, Site occupancy of rare-earth cations in BaTiO3. Jpn. J. Appl. Phys. 40, 255–258 (2001)ADSCrossRefGoogle Scholar
  21. 21.
    M.T. Buscaglia, V. Buscaglia, P. Ghigna, M. Viviani, G. Spinolo, A. Testino, P. Nanni, Amphoteric behavior of Er3+ dopants in BaTiO3: an Er–LIII edge EXAFS assessment, Phys. Chem. Chem. Phys. 6, 3710–3713 (2004)CrossRefGoogle Scholar
  22. 22.
    M. Ganguly, S.K. Rout, P.K. Barhai, C.W. Ahn, I.W. Kim, Structural, electrical, and optical properties of (Ba1–xNd2x/3)TiO3 ceramics. Phase Trans 87(2), 157–174 (2014)CrossRefGoogle Scholar
  23. 23.
    L.A. Xue, Y. Chen, R.J. Brook, The influence of ionic radii on the incorporation of trivalent dopants into BaTiO3. Mater. Sci. Eng. B 1(2), 193–201 (1988)CrossRefGoogle Scholar
  24. 24.
    L. Li, M. Wang, D. Guo, R. Fu, Q. Meng, Effect of Gd amphoteric substitution on structure and dielectric properties of BaTiO3-based ceramics. J. Electroceram. 30, 129–132 (2013)CrossRefGoogle Scholar
  25. 25.
    G. Nag Bhargavi, A. Khare, T. Badapanda, M.S. Anwar, N. Brahme, Electrical characterizations of BaZr0.05Ti0.95O3 perovskite ceramic by impedance spectroscopy, electric modulus and conductivity. J. Mater. Sci. Mater. Electron. 28, 16956–16964 (2017)CrossRefGoogle Scholar
  26. 26.
    P.A. Jha, A.K. Jha, Effects of yttrium substitution on structural and electrical properties of barium zirconate titanate ferroelectric ceramics. Curr. Appl. Phys. 13, 1413–1419 (2013)ADSCrossRefGoogle Scholar
  27. 27.
    S. Shirasaki, H. Yamamura, H. Haneda, K. Kakegawa, J. Moori, Defect structure and oxygen diffusion in undoped and La-doped polycrystalline barium titanate. J. Chem. Phys. 73, 640–644 (1980)CrossRefGoogle Scholar
  28. 28.
    M.M.V. Petrovic, J.D. Bobic, R. Grigalaitis, B.D. Stojanovic, J. Banys, Acta Phys. Pol. A 124, 155–160 (2013)CrossRefGoogle Scholar
  29. 29.
    Y. Wenhu, P. Yongping, C. Xiaolong, W. Jinfei, Study of reoxidation in heavily La-doped barium titanate ceramics. J. Phys. Conf. Ser. 152, 012040 (2009)CrossRefGoogle Scholar
  30. 30.
    S. Parida, S.K. Rout, L.S. Cavalcante, A.Z. Simões, P.K. Barhai, N.C. Batista, E. Longo, M. Siu Li, S.K. Sharma, Structural investigation and improvement of photoluminescence properties in Ba(ZrxTi1–x)O3 powders synthesized by the solid state reaction method. Mater. Chem. Phys 142, 70–76 (2013)CrossRefGoogle Scholar
  31. 31.
    C.L. Freeman, J.A. Dawson, H. Chen, J.H. Harding, L. Ben, D.C. Sinclair, A new potential model for barium titanate and its implications for rare-earth doping. J. Mater. Chem. 21, 4861–4868 (2011)CrossRefGoogle Scholar
  32. 32.
    X. Liang, Z. Meng, W. Wu, Effect of acceptor and donor dopants on the dielectric and tunable properties of barium strontium titanate. J. Am. Ceram. Soc. 87(12), 2218–2222 (2004)CrossRefGoogle Scholar
  33. 33.
    D.Y. Lu, Self-adjustable site occupations between Ba-site Tb3+ and Ti-site Tb4+ ions in terbium-doped barium titanate ceramics. Sol. Stat. Ionics 276, 98–106 (2015)CrossRefGoogle Scholar
  34. 34.
    A. Khokhar, P.K. Goyal, O.P. Thakur, A.K. Shukla, K. Sreenivas, Influence of lanthanum distribution on dielectric and ferroelectric properties of BaBi4–xLaxTi4O15 ceramics. Mater. Chem. Phys. 152, 13–25 (2015)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • G. Nag Bhargavi
    • 1
  • Ayush Khare
    • 1
  • Tanmaya Badapanda
    • 2
  • M. Shahid Anwar
    • 3
  1. 1.Department of PhysicsNational Institute of TechnologyRaipurIndia
  2. 2.Nanophotonics Laboratory, Department of PhysicsC.V. Raman College of EngineeringBhubaneswarIndia
  3. 3.Colloids and Materials Chemistry DepartmentCSIR-Institute of Minerals and Materials TechnologyBhubaneswarIndia

Personalised recommendations