Advertisement

Applied Physics A

, 124:737 | Cite as

Electrochemical sensor for detection of mercury (II) ions in water using nanostructured bismuth hexagons

  • Sandeep Gupta
  • Rini Singh
  • M. D. Anoop
  • Vaibhav Kulshrestha
  • Divesh N. Srivastava
  • Kanad Ray
  • S. L. Kothari
  • Kamlendra Awasthi
  • Manoj Kumar
Article
  • 77 Downloads

Abstract

This study presents a systematic observation of the ability of bismuth nanostructures to detect trace amounts of mercury. Nanostructured hexagons of bismuth were synthesized using electrochemical deposition with potentiostatic mode on indium tin oxide-coated glass electrodes. Regular hexagons composed of nano-sized hexagonal building blocks (edge length \(\approx 80\) to 700 nm) with well-defined edges were observed in scanning electron microscopy studies. X-ray diffraction pattern indicates the presence of polycrystalline bismuth and bismuth oxide in rhombohedral and cubic phases, respectively. X-ray photoelectron spectroscopy was done to analyze the chemical structure of the prepared nanostructures. Square wave anodic stripping voltammetry technique confirms that these nanostructured electrodes are highly sensitive to \(Hg^{2+}\) ions down to concentrations as low as 0.74 ppb.

Notes

Acknowledgements

We thank DST, New Delhi (IFA-11/PH-06, IFA-13/PH-84), SERB, New Delhi (ECR/2016/1780, ECR/2016/1888), and UGC DAE CSR, Indore (CSR-IC/CRS-73/2014-15/581), for providing financial support. We are also thankful to MRC, MNIT Jaipur, for providing characterization facilities.

References

  1. 1.
    Y. Lu et al., A review of the identification and detection of heavy metal ions in the environment by voltammetry. Talanta 178, 324–338 (2018)CrossRefGoogle Scholar
  2. 2.
    B. Zhang, Facile and green fabrication of size-controlled AuNPs/CNFs hybrids for the highly sensitive simultaneous detection of heavy metal ions. Electrochim. Acta 196, 422–430 (2016)CrossRefGoogle Scholar
  3. 3.
    L. Cui, J. Wu, H. Ju, Electrochemical sensing of heavy metal ions with inorganic, organic and bio-materials. Biosens. Bioelectron. 63, 276–286 (2015)CrossRefGoogle Scholar
  4. 4.
    K.Z. Brainina, N.Y. Stozhko, Z.V. Shalygina, Surface microreliefs and voltage-current characteristics of gold electrodes and modified thick-film graphite-containing electrodes. J. Anal. Chem. 59, 753–759 (2004)CrossRefGoogle Scholar
  5. 5.
    F. Okçu, F.N. ERTAŞ, Hİ. Gökçel, H. Tural, L anodic stripping voltammetric behavior of mercury in chloride medium and its determination at a gold film electrode. Turk. J. Chem. 29, 355–366 (2005)Google Scholar
  6. 6.
    B. Kaur, R. Srivastava, B. Satpati, Ultratrace detection of toxic heavy metal ions found in water bodies using hydroxyapatite supported nanocrystalline ZSM-5 modified electrodes. New J. Chem. 39, 5137–5149 (2015)CrossRefGoogle Scholar
  7. 7.
    S. Deshmukh, Terephthalic acid capped iron oxide nanoparticles for sensitive electrochemical detection of heavy metal ions in water. J. Electroanal. Chem. 788, 91–98 (2017)CrossRefGoogle Scholar
  8. 8.
    S.-F. Zhou, Individual and simultaneous electrochemical detection toward heavy metal ions based on l-cysteine modified mesoporous MnFe\(_{2}\)O\(_{4}\) nanocrystal clusters. J. Alloys Compd. 721, 492–500 (2017)Google Scholar
  9. 9.
    W.-Y. Zhou, Surface-electronic-state-modulated, single-crystalline (001) TiO\(_{2}\) nanosheets for sensitive electrochemical sensing of heavy-metal ions. Anal. Chem. 89, 3386–3394 (2017)Google Scholar
  10. 10.
    W. Yantasee, Y. Lin, T.S. Zemanian, G.E. Fryxell, Voltammetric detection of lead (ii) and mercury (ii) using a carbon paste electrode modified with thiol self-assembled monolayer on mesoporous silica (samms). Analyst 128, 467–472 (2003)ADSCrossRefGoogle Scholar
  11. 11.
    N. Zhou, H. Chen, J. Li, L. Chen, Highly sensitive and selective voltammetric detection of mercury (ii) using an ito electrode modified with 5-methyl-2-thiouracil, graphene oxide and gold nanoparticles. Microchim. Acta 180, 493–499 (2013)CrossRefGoogle Scholar
  12. 12.
    A. Economou, Bismuth-film electrodes: recent developments and potentialities for electroanalysis. TrAC Trends Anal. Chem. 24, 334–340 (2005)CrossRefGoogle Scholar
  13. 13.
    X. Zhang, On-site determination of Pb\(^{2+}\) and Cd\(^{2+}\) in seawater by double stripping voltammetry with bismuth-modified working electrodes. Microchem. J. 126, 280–286 (2016)Google Scholar
  14. 14.
    K.C. Armstrong, C.E. Tatum, R.N. Dansby-Sparks, J.Q. Chambers, Z.-L. Xue, Individual and simultaneous determination of lead, cadmium, and zinc by anodic stripping voltammetry at a bismuth bulk electrode. Talanta 82, 675–680 (2010)CrossRefGoogle Scholar
  15. 15.
    J. Wang, Stripping analysis at bismuth electrodes: a review. Electroanalysis 17, 1341–1346 (2005)CrossRefGoogle Scholar
  16. 16.
    H. Kim, Structure and optical properties of Bi\(_{2}\)S\(_{3}\) and Bi\(_{2}\)O\(_{3}\) nanostructures synthesized via thermal evaporation and thermal oxidation routes. Chem. Eng. J. 215, 151–156 (2013)Google Scholar
  17. 17.
    X. Wang, Y. Zhang, Z. Wu, Magnetic and optical properties of multiferroic bismuth ferrite nanoparticles by tartaric acid-assisted sol–gel strategy. Mater. Lett. 64, 486–488 (2010)CrossRefGoogle Scholar
  18. 18.
    J. Yu, Flowerlike C-doped BiOCl nanostructures: facile wet chemical fabrication and enhanced UV photocatalytic properties. Appl. Surf. Sci. 284, 497–502 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    M.A. Tumelero, Electrodeposition and ab initio studies of metastable orthorhombic Bi\(_{2}\)Se\(_{3}\): a novel semiconductor with bandgap for photovoltaic applications. J. Phys. Chem. C 120, 11797–11806 (2016)Google Scholar
  20. 20.
    P.B. Souza, M.A. Tumelero, G. Zangari, A.A. Pasa, Tuning electrodeposition conditions towards the formation of smooth Bi\(_{2}\)Se\(_{3}\) thin films. J. Electrochem. Soc. 164, D401–D405 (2017)Google Scholar
  21. 21.
    B. Illy, B. Shollock, J. MacManus-Driscoll, M. Ryan, Electrochemical growth of ZnO nanoplates. Nanotechnology 16, 320 (2005)ADSCrossRefGoogle Scholar
  22. 22.
    G. March, T.D. Nguyen, B. Piro, Modified electrodes used for electrochemical detection of metal ions in environmental analysis. Biosensors 5, 241–275 (2015)CrossRefGoogle Scholar
  23. 23.
    O.A. Farghaly, M. Ghandour, Square-wave stripping voltammetry for direct determination of eight heavy metals in soil and indoor-airborne particulate matter. Environ. Res. 97, 229–235 (2005)CrossRefGoogle Scholar
  24. 24.
    H.M. Soliman, A.-H.B. Kashyout, Electrochemical deposition and optimization of thermoelectric nanostructured bismuth telluride thick films. Engineering 3, 659 (2011)CrossRefGoogle Scholar
  25. 25.
    Benning, L. G. & Waychunas, G. A. Nucleation, growth, and aggregation of mineral phases: mechanisms and kinetic controls. Kinetics of Water–Rock Interaction (Springer, New York, 2008), pp. 259–333Google Scholar
  26. 26.
    L. Guo, G. Oskam, A. Radisic, P.M. Hoffmann, P.C. Searson, Island growth in electrodeposition. J. Phys. D Appl. Phys. 44, 443001 (2011)ADSCrossRefGoogle Scholar
  27. 27.
    H.-Y. Jiang, In situ construction of \(\alpha\)-Bi\(_{2}\)O\(_{3}\)/G-C\(_{3}\)N\(_{4}\)/\(\beta\)-Bi\(_{2}\)O\(_{3}\) composites and their highly efficient photocatalytic performances. RSC Adv. 5, 92963–92969 (2015)Google Scholar
  28. 28.
    G. Aragay, A. Merkoçi, Nanomaterials application in electrochemical detection of heavy metals. Electrochim. Acta 84, 49–61 (2012)CrossRefGoogle Scholar
  29. 29.
    A. Merkoçi, Electrochemical biosensing with nanoparticles. FEBS J. 274, 310–316 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Amity Institute of BiotechnologyAmity University RajasthanJaipurIndia
  2. 2.Department of PhysicsMalaviya National Institute of TechnologyJaipurIndia
  3. 3.Department of PhysicsBanasthali VidyapithBanasthaliIndia
  4. 4.CSIR-Central Salt and Marine Chemicals Research InstituteBhavnagarIndia
  5. 5.Academy of Scientific and Innovative ResearchBhavnagarIndia
  6. 6.Analytical Division and Centralized Instrument FacilityCSIR-Central Salt and Marine Chemicals Research InstituteBhavnagarIndia
  7. 7.Amity School of Applied SciencesAmity University RajasthanJaipurIndia

Personalised recommendations