Applied Physics A

, 124:739 | Cite as

Source/Gate Material-Engineered Double Gate TFET for improved RF and linearity performance: a numerical simulation

  • Skanda Shekhar
  • Jaya Madan
  • Rishu ChaujarEmail author


This work seeks to present a comparative analysis of linear and analog/RF performances of a silicon (Si)-source double gate tunnel field effect transistors (DG-TFET), germanium (Ge)-source DG-TFET and Gate Material Engineered germanium (GME-Ge)-source DG-TFET. The objective of this analysis is to probe the viability of the Ge-source-DG-TFET and GME-Ge-source-DG-TFET as possible components of RF/microwave systems vis-à-vis conventional Si-source-DG-TFETs. The Ge-source-DG-TFET has been shown to have superior performance parameters as compared to the Si-source-DG-TFET. It is realized that the GME-Ge-source-DG-TFET preserves the superior performance of the Ge-source-DG-TFET and displays improved device reliability in contrast to the latter. With these ideas in the backdrop, a study of parasitic capacitances, transconductance (gm1) and its higher order coefficients (gm2 and gm3), and signal performance metrics such as VIP2, VIP3, third-order Input Intercept Point (IIP3) and third-order Intermodulation Distortion (IMD3) sheds light on the linear performances of the three devices. Further, the analog/RF performances of the three devices are investigated through analog/RF Figures of Merit (FOM) including current gain, unilateral power gain and maximum available power gain (Gma). This analysis reveals that the GME-Ge-source-DG-TFET is suitable for high-frequency, low-power operation required in modern communication systems.



The authors would like to thank the Microelectronics Research Lab, Department of Applied Physics, Delhi Technological University, New Delhi, India.


  1. 1.
    T. Sekigawa, Y. Hayashi, Calculated threshold-voltage characteristics of an XMOS transistor having an additional bottom gate. Solid-State Electron. 27, 827–828 (1984)ADSCrossRefGoogle Scholar
  2. 2.
    K. Bernstein, R.K. Cavin, W. Porod, A. Seabaugh, J. Welser, Device and architecture outlook for beyond CMOS switches. Proc. IEEE 98, 2169–2184, (2010)CrossRefGoogle Scholar
  3. 3.
    P.-F. Wang, K. Hilsenbeck, T. Nirschl, M. Oswald, C. Stepper, M. Weis et al., Complementary tunneling transistor for low power application. Solid-State Electron. 48, 2281–2286 (2004)ADSCrossRefGoogle Scholar
  4. 4.
    J. Madan, S. Shekhar, R. Chaujar, PNIN-GAA-tunnel FET with palladium catalytic metal gate as a highly sensitive hydrogen gas sensor, in Simulation of semiconductor processes and devices (SISPAD), 2017 international conference on, 2017, pp. 197–200Google Scholar
  5. 5.
    Y. Taur, An analytical solution to a double-gate MOSFET with undoped body. IEEE Electron Device Lett. 21, 245–247 (2000)ADSCrossRefGoogle Scholar
  6. 6.
    N.N. Mojumder, K. Roy, Band-to-band tunneling ballistic nanowire FET: Circuit-compatible device modeling and design of ultra-low-power digital circuits and memories. IEEE Trans. Electron Devices 56, 2193–2201 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    J. Madan, R. Chaujar, Gate drain underlapped-PNIN-GAA-TFET for comprehensively upgraded analog/RF performance. Superlattices Microstruct. 102, 17–26 (2017)ADSCrossRefGoogle Scholar
  8. 8.
    J. Madan, R. Chaujar, Numerical simulation of N + source pocket PIN-GAA-tunnel FET: impact of interface trap charges and temperature. IEEE Trans. Electron Devices 64, 1482–1488 (2017)ADSCrossRefGoogle Scholar
  9. 9.
    A.S. Verhulst, W.G. Vandenberghe, K. Maex, S. De Gendt, M.M. Heyns, G. Groeseneken, Complementary silicon-based heterostructure tunnel-FETs with high tunnel rates. IEEE Electron Device Lett. 29, 1398–1401 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    J. Madan, S. Shekhar, R. Chaujar, Source material assessment of heterojunction DG-TFET for improved analog performance, in Microelectronic devices, circuits and systems (ICMDCS), 2017 international conference on, 2017, pp. 1–5Google Scholar
  11. 11.
    A.N. Hanna, H.M. Fahad, M.M. Hussain, InAs/Si hetero-junction nanotube tunnel transistors. Sci Rep 5, 9843 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    K.E. Moselund, D. Cutaia, H. Schmid, M. Borg, S. Sant, A. Schenk et al., Lateral InAs/Si p-type tunnel FETs integrated on Si—part 1: experimental devices. IEEE Trans. Electron Devices 63, 4233–4239 (2016)ADSCrossRefGoogle Scholar
  13. 13.
    A. Hanna, M.M. Hussain, Si/Ge hetero-structure nanotube tunnel field effect transistor. J. Appl. Phys. 117, 014310 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    C.-H. Shih, N.D. Chien, Sub-10-nm tunnel field-effect transistor with graded Si/Ge heterojunction. IEEE Electron Device Lett. 32, 1498–1500 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    J. Madan, S. Shekhar, R. Chaujar, Gate metal engineered heterojunction DG-TFETs for superior analog performance and enhanced device reliability, in Information and communication technology (CICT), 2017 conference on, 2017, pp. 1–4Google Scholar
  16. 16.
    J. Madan, R. Chaujar, Interfacial charge analysis of heterogeneous gate dielectric-gate all around-tunnel FET for improved device reliability. IEEE Trans. Device Mater. Reliab. 16, 227–234 (2016)CrossRefGoogle Scholar
  17. 17.
    M. Pala, D. Esseni, F. Conzatti, Impact of interface traps on the IV curves of InAs tunnel-FETs and MOSFETs: A full quantum study, in Electron devices meeting (IEDM), 2012 IEEE international, 2012, pp. 6.6. 1-6.6. 4Google Scholar
  18. 18.
    W. Cao, C. Yao, G. Jiao, D. Huang, H. Yu, M.-F. Li, Improvement in reliability of tunneling field-effect transistor with pnin structure. IEEE Trans. Electron Devices 58, 2122–2126 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    R. Chaujar, R. Kaur, M. Saxena, M. Gupta, R. Gupta, Intermodulation distortion and linearity performance assessment of 50-nm gate length L-DUMGAC MOSFET for RFIC design. Superlattices Microstruct. 44, 143–152 (2008)ADSCrossRefGoogle Scholar
  20. 20.
    S. Cho, J.S. Lee, K.R. Kim, B.-G. Park, J.S. Harris, I.M. Kang, Analyses on small-signal parameters and radio-frequency modeling of gate-all-around tunneling field-effect transistors. IEEE Trans. Electron Devices 58, 4164–4171 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    I.M. Kang, J.-S. Jang, W.Y. Choi, Radio frequency performance of hetero-gate-dielectric tunneling field-effect transistors. Jpn. J. Appl. Phys. 50, 124301 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    J. Madan, R.S. Gupta, R. Chaujar, Performance investigation of heterogeneous gate dielectric-gate metal engineered–gate all around-tunnel FET for RF applications, Microsyst. Technol. 23, 4081–4090CrossRefGoogle Scholar
  23. 23.
    K. Boucart, A.M. Ionescu, Double-gate tunnel FET with high-K gate dielectric. IEEE Trans. Electron Devices 54, 1725–1733 (2007)ADSCrossRefGoogle Scholar
  24. 24.
    N. Cui, R. Liang, J. Xu, Heteromaterial gate tunnel field effect transistor with lateral energy band profile modulation. Appl. Phys. Lett. 98, 142105 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    E. Gnani, E. Baravelli, A. Gnudi, S. Reggiani, G. Baccarani, Capacitance estimation for InAs tunnel FETs by means of full-quantum k· p simulation. Solid-State Electron. 108, 104–109 (2015)ADSCrossRefGoogle Scholar
  26. 26.
    S. Mookerjea, R. Krishnan, S. Datta, V. Narayanan, On enhanced Miller capacitance effect in interband tunnel transistors. IEEE Electron Device Lett. 30, 1102–1104 (2009)ADSCrossRefGoogle Scholar
  27. 27.
    J. Madan, R. Gupta, R. Chaujar, in Advanced Manufacturing, Electronics and Microsystems: TechConnect Briefs. TCAD Analysis of Small Signal Parameters and RF Performance of Heterogeneous Gate Dielectric-Gate all around Tunnel FET, vol 4 (2015), pp. 189–192Google Scholar
  28. 28.
    S. Kaya, W. Ma, Optimization of RF linearity in DG-MOSFETs. IEEE Electron Device Lett. 25, 308–310 (2004)ADSCrossRefGoogle Scholar
  29. 29.
    P.H. Woerlee, M.J. Knitel, R. Van Langevelde, D.B. Klaassen, L.F. Tiemeijer, A.J. Scholten et al., RF-CMOS performance trends. IEEE Trans. Electron Devices 48, 1776–1782 (2001)ADSCrossRefGoogle Scholar
  30. 30.
    R. Chaujar, R. Kaur, M. Saxena, M. Gupta, R. Gupta, TCAD assessment of gate electrode workfunction engineered recessed channel (GEWE-RC) MOSFET and its multi-layered gate architecture, Part II: analog and large signal performance evaluation”. Superlattices Microstruct. 46, 645–655 (2009)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Microelectronics Research Lab, Department of Applied PhysicsDelhi Technological UniversityDelhiIndia
  2. 2.Chitkara University Institute of Engineering and TechnologyChitkara UniversityPunjabIndia

Personalised recommendations