Advertisement

Applied Physics A

, 124:741 | Cite as

White-light-emitting Dy3+-doped amorphous SiO2 nanophosphors derived from rice husk

  • C. Mbakaan
  • I. Ahemen
  • A. N. Amah
  • A. D. Onojah
  • L. Koao
Article
  • 64 Downloads

Abstract

This research reports on the synthesis and characterization of white-light-emitting rice husk nano-silica doped with dysprosium ion (SiO2:Dy3+). The synthesis was carried out via the sol–gel method. Scanning electron microscopy and transmission electron microscopy show agglomerated particles. X-ray diffraction analysis shows all samples have amorphous structure. Diffuse reflectance analysis shows absorption band of the host SiO2 and 6H15/2 → 4I9/2 + 4G9/2, 6P7/2, 4I11/2, 4F7/2, 4G11/2, 4I15/2, 4F9/2, and 6F3/2 transitions of Dy3+ ions. Photoluminescence excitation spectra of the nanophosphors display both the host band as well as the intra-configurational transition lines of Dy3+ in the 250–500-nm range. Photoluminescence emission obtained at 275- and 350-nm excitation wavelengths shows two dominant emission lines assigned to the \(^{4}{{\text{F}}_{{\raise0.5ex\hbox{$\scriptstyle 9$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle 2$}}}}\, \to {\,^6}{{\text{H}}_{{\raise0.5ex\hbox{$\scriptstyle {15}$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle 2$}}}}\) (blue) and \(^{4}{{\text{F}}_{{\raise0.5ex\hbox{$\scriptstyle 9$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle 2$}}}}\, \to {\,^4}{{\text{H}}_{{\raise0.5ex\hbox{$\scriptstyle {13}$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle 2$}}}}\) (yellow) transitions of the Dy3+ ion. The International Commission on Illumination (CIE) chromaticity coordinate diagrams display white light with correlated color temperature (CCT) between 4868 and 6256 K (cold white light). These results show that SiO2:Dy3+ derived from rice husk has the potential for applications in white-light-emitting diodes (WLEDS) and other lighting technologies.

Notes

Funding

The first author received research funding from Tertiary Education Trust Fund (TETFUND), Nigeria, and we are grateful for the support.

References

  1. 1.
    A.K. Vishwakarma, K. Jha, M. Jayasimhadri, B. Sivaiah, B. Gahtori, D. Haranath, Emerging cool white light emission from Dy3+ doped single phase alkaline earth niobate phosphors for indoor lighting applications. Dalton Trans. 44, 17166–17174 (2015).  https://doi.org/10.1039/c5dt02436f CrossRefGoogle Scholar
  2. 2.
    R. Praveena, K. Balasubrahmanyam, L. Jyothi, G. Venkataiah, C. Basavapoornima, C.K. Jayasankar, White light generation from Dy3+-doped yttrium aluminum gallium mixed garnet nano-powders. J. Lumin. 170, 262–270 (2016).  https://doi.org/10.1016/j.jlumin.2015.10.012 CrossRefGoogle Scholar
  3. 3.
    Z.L. Wang, K.W. Cheah, H.L. Tam, M.L. Gong, Near-ultraviolet light excited deep blue-emitting phosphor for solid-state lighting. J. Alloys Compd. 482, 437–439 (2009).  https://doi.org/10.1016/j.jallcom.2009.04.038 CrossRefGoogle Scholar
  4. 4.
    I.D.W. Cooke, S. Fe, N.M. Us, E.A. Mckigney, L. Alamos, N.M. Us, R.E. Muenchausen, N.M. Us, B.L. Bennett, (12) United States Patent (10) Patent No.: (45) Date of Patent: (58) Field State St. such it "R germanate, zinc gallate, calcium magnesium pyrosilicate, United States Patent US 75250, 1–16 (2009)Google Scholar
  5. 5.
    A.E. Abbass, H.C.S.R.E. Kroon, White luminescence from sol–gel silica doped with silver. J. Sol. Gel. Sci. Technol. (2015).  https://doi.org/10.1007/s10971-015-3825-y CrossRefGoogle Scholar
  6. 6.
    W. Wang, J.C. Martin, N. Zhang, Harvesting silica nanoparticles from rice husks. J. Nanoparticle Res. 13, 6981–6990 (2011).  https://doi.org/10.1007/s11051-011-0609-3 ADSCrossRefGoogle Scholar
  7. 7.
    H. Chen, Biogenic silica nanoparticles derived from rice husk biomass and their applications. Ph.D. Dissertation, Texas state university, USA (2013)Google Scholar
  8. 8.
    Y. Liu, Z. Wang, H. Zeng, C. Chen, J. Liu, L. Sun, W. Wang, Photoluminescent mesoporous carbon-doped silica from rice husks. Mater. Lett. 142, 280–282 (2015).  https://doi.org/10.1016/j.matlet.2014.12.034 CrossRefGoogle Scholar
  9. 9.
    W. Wang, J.C. Martin, X. Fan, A. Han, Z. Luo, L. Sun, Silica nanoparticles and frameworks from rice husk biomass. ACS Appl. Mater. Interfaces 4, 977–981 (2012).  https://doi.org/10.1021/am201619u CrossRefGoogle Scholar
  10. 10.
    Z. Wang, S. Zeng, Y. Li, W. Wang, Z. Zhang, H. Zeng, W. Wang, L. Sun, Luminescence mechanism of carbon incorporated silica nanoparticles derived from rice husk biomass. Ind. Eng. Chem. Res. 56(20), 5906–5912 (2017)CrossRefGoogle Scholar
  11. 11.
    H. Chen, W. Wang, J.C. Martin, A.J. Oliphant, P.A. Doerr, F. Xu, K.M. Deborn, C. Chen, L. Sun, Extraction of lignocellulose and synthesis of porous silica nanoparticles from rice husks: a comprehensive utilization of rice husk biomass. ACS Sustain. Chem. Eng. 1, 254–259 (2013).  https://doi.org/10.1021/sc300115 CrossRefGoogle Scholar
  12. 12.
    R. Bryant, A. Proctor, M. Hawkridge, A. Jackson, K. Yeater, P. Counce, W. Yan, A. Mcclung, R. Fjellstrom, Received: genetic variation and association mapping of silica concentration in rice hulls using a germplasm collection. Genetica 139, 1383–1398 (2011).  https://doi.org/10.1007/s10709-012-9637-x CrossRefGoogle Scholar
  13. 13.
    A. Feinle, F. Lavoie-cardinal, J. Akbarzadeh, H. Peterlik, M. Adlung, C. Wickleder, N. Hu, Novel sol–gel precursors for thin mesoporous Eu3+-doped silica coatings as efficient luminescent materials. Chem. Mater. 21, A–J (2012)Google Scholar
  14. 14.
    J. Kalkman, E. De Bres, A. Polman, Y. Jun, D.J. Norris, J. Kalkman, E. De Bres, A. Polman, Selective excitation of erbium in silicon-infiltrated silica colloidal photonic crystals Selective excitation of erbium in silicon-infiltrated silica colloidal photonic crystals. J. Appl. Phys. 95, 2297–2302 (2004).  https://doi.org/10.1063/1.1640459 ADSCrossRefGoogle Scholar
  15. 15.
    K. Dimos, I.B. Koutselas, M.A. Karakassides, R. Zbo, P. Komadel, Low-temperature synthesis and characterization of gallium nitride quantum dots in ordered mesoporous silica. J. Phys. Chem. C 116, 1185–1194 (2012).  https://doi.org/10.1021/jp208011y CrossRefGoogle Scholar
  16. 16.
    P. Scopece, A. Parma, F. Enrichi, R. Ricco, A.R. Mazaheri, P. Riello, A. Benedetti, Comparison of Eu (NO 3) 3 and Eu (acac) 3 precursors for doping luminescent silica nanoparticles. J. Nanoparticle Res. 12, 1925–1931 (2010).  https://doi.org/10.1007/s11051-009-9756-1 ADSCrossRefGoogle Scholar
  17. 17.
    C. Lin, Y. Song, F. Gao, Synthesis and luminescence properties of Eu (III) -doped silica nanorods based on the sol–gel process. J. Sol. Gel. Sci. Technol. 69, 536–543 (2014).  https://doi.org/10.1007/s10971-013-3254-8 CrossRefGoogle Scholar
  18. 18.
    L. Gong, H. Zou, G. Wang, Y. Sun, Q. Huo, X. Xu, Y. Sheng, Synthesis and luminescence properties of monodisperse SiO2 @ SiO2:Eu3+ microspheres. Opt. Mater. (Amst.) 37, 583–588 (2014).  https://doi.org/10.1016/j.optmat.2014.07.025 ADSCrossRefGoogle Scholar
  19. 19.
    V.A. Volkovich, A.B. Ivanov, S.M. Yakimov, D.V. Tsarevskii, O.A. Golovanova, V.V. Sukhikh, T.R. Griffiths, Electronic absorption spectra of rare earth (III) species in NaCl–2CsCl eutectic based melts. AIP Conf. Proc. 1767, 0200023-1–0200023-11 (2016).  https://doi.org/10.1063/1.4962607 CrossRefGoogle Scholar
  20. 20.
    P. Yasaka, J. Kaewkhao, White emission materials from glass doped with rare earth ions: a review. AIP Conf. Proc. (2017).  https://doi.org/10.1063/1.4943695 CrossRefGoogle Scholar
  21. 21.
    S.N. Ogugua, H.C. Swart, O.M. Ntwaeaborwa, White light emitting LaGdSiO5:Dy3+ nanophosphors for solid-state lighting applications. Phys. B Phys. Condens. Matter. (2015).  https://doi.org/10.1016/j.physb.2015.10.006 CrossRefGoogle Scholar
  22. 22.
    N. Danchova, S. Gutzov, Time evolution of samarium doped silica sol–gel materials followed by optical spectroscopy. J. Sol. Gel. Sci. Technol. 66, 248–252 (2013).  https://doi.org/10.1007/s10971-013-3001-1 CrossRefGoogle Scholar
  23. 23.
    P. Kubelka, New contributions to the optics of intensely light-scattering materials. Part I. J. Opt. Soc. Am. 38, 448–457 (1948)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    R. Salh, Defect related luminescence in silicon dioxide network: a review. Cryst. Silicon Prop. Uses. (2011).  https://doi.org/10.5772/35404 CrossRefGoogle Scholar
  25. 25.
    Y. Li, Y. Chang, Y. Lin, Y. Chang, Y. Lin, Lanthanum aluminum germanate LaAlGe2O7 phosphors. J. Alloys Compd. 439, 367–375 (2007).  https://doi.org/10.1016/j.jallcom.2006.08.269 CrossRefGoogle Scholar
  26. 26.
    B. Grobelna, A. Synak, P. Bojarski, K. Szczodrowski, B. Kuklin, Synthesis and luminescence characteristics of Dy3+ ions in silica xerogels doped with Ln2-xDyx(WO4)3, Opt. Mater. (Amst.) 35, 456–461 (2013).  https://doi.org/10.1016/j.optmat.2012.09.040 CrossRefGoogle Scholar
  27. 27.
    L.F. Koao, H.C. Swart, R.I. Obed, F.B. Dejene, Synthesis and characterization of Ce3+ doped silica (SiO2) nanoparticles. J. Lumin. 131, 1249–1254 (2011).  https://doi.org/10.1016/j.jlumin.2010.10.038 CrossRefGoogle Scholar
  28. 28.
    Y. Ishikawa, S. Kawasaki, Y. Ishi, K. Sato, A. Matsumura, White photoluminescence from carbon-incorporated silica fabricated from rice husk. Jpn. J. Appl. Phys. 02, 01AK02 (2012).  https://doi.org/10.1143/JJAP.51.01AK02 CrossRefGoogle Scholar
  29. 29.
    A. Akojwar, K.N. Shinde, N.S. Kokode, Results in physics halophosphate phosphor by a novel facile combustion method. Results Phys. 7, 1161–1166 (2017).  https://doi.org/10.1016/j.rinp.2017.02.043 ADSCrossRefGoogle Scholar
  30. 30.
    Z. Zhang, X. Sun, L. Liu, Y. Peng, X. Shen, W. Zhang, Synthesis and luminescence properties of novel LiSr4 (BO3) 3:Dy3+ phosphors. Ceram. Int. 39, 1723–1728 (2013).  https://doi.org/10.1016/j.ceramint.2012.08.017 CrossRefGoogle Scholar
  31. 31.
    C. Cao, H.K. Yang, B.K. Moon, B.C. Choi, J.H. Jeong, J.E. Soc, P. J-j, C. Cao, K. Yang, K. Moon, C. Choi, Host sensitized white luminescence of Dy3+ activated GdPO4 phosphors service host sensitized white luminescence of Dy3+ activated GdPO4. J. Electrochem. Soc. 158, 2–6 (2011).  https://doi.org/10.1149/1.3517458 CrossRefGoogle Scholar
  32. 32.
    Q. Su, Z. Pei, L. Chi, H. Zhang, Z. Zhang, F. Zou, The yellow-to-blue intensity ratio (Y/B) of Dy3+ emission. J. Alloys Compd. 192, 25–27 (1993)CrossRefGoogle Scholar
  33. 33.
    S.H. Lee, J.H. Park, S.M. Son, J.S. Kim, H.L. Park, H.L. Park, White-light-emitting phosphor: CaMgSi2O6:Eu2+, Mn2+ and its related properties with blending. Appl. Phys. Lett. 89, 221916 (2006).  https://doi.org/10.1063/1.2399338 ADSCrossRefGoogle Scholar
  34. 34.
    J. Herna, R.L. Lee, J. Romero, Calculating correlated color temperatures across the entire gamut of daylight and skylight chromaticities. Appl. Opt. 38, 5703–5709 (1999)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of AgricultureMakurdiNigeria
  2. 2.Department of PhysicsUniversity of the Free State-QwaQwa CampusPhuthaditjhabaSouth Africa

Personalised recommendations