Applied Physics A

, 124:734 | Cite as

The ovonic threshold switching characteristics in SixTe1−x based selector devices

  • Tian Gao
  • Jie FengEmail author
  • Haili Ma
  • Xi Zhu


In this study, SixTe1−x-based selector devices with outstanding performance were fabricated by standard CMOS technology. The ovonic threshold switching characteristics and the apparent threshold voltage \(\left( {{V_{{\text{th}}}}} \right)\) were observed in I–V curves. The increase of Si content directly induced the decrease of leakage current of the W/SixTe1−x/W devices. It was found that the leakage current of the W/SixTe1−x/W devices decreased with the increase of the thickness of SixTe1−x films. An optimized bidirectional selector was achieved by modulating the composition and thickness of SixTe1−x films. The SixTe1−x-based selector device has a series of advantages, such as ultrahigh selectivity (~ 107), proper operating current (100 µA), threshold voltage (~ ± 1.2 V), as well as satisfactory switching uniformity and retention performance. Corresponding Poole–Frenkel based analytical model and energy band model were employed to explain the conduction mechanism and threshold switching characteristics of W/SixTe1−x/W selector devices. The origin of the threshold switching characteristics is considered to be that the high electric field derived carriers to tunnel from the deep traps to the shallow traps when a high bias was applied to the devices.



The authors thank the Instrumental Analysis Center of Shanghai Jiao Tong University and Key Laboratory of Microelectronics Devices and Integrated Technology, Institute of Microelectronics of Chinese Academy of Sciences.


  1. 1.
    R. Waser, Nanoelectronics and Information Technology (Wiley, New York, 2012), p. 995Google Scholar
  2. 2.
    C. Kügeler, M. Meier, R. Rosezin, S. Gilles, R. Waser, Solid State Electron. 53(12), 1287 (2009)ADSCrossRefGoogle Scholar
  3. 3.
    M.M. Ziegler. M.R. Stan, IEEE Trans. Nanotechnol. 2(4), 217 (2003)ADSCrossRefGoogle Scholar
  4. 4.
    W. Lee, J. Park, J. Shin, J. Woo, S. Kim, G. Choi, S. Jung, S. Park, D. Lee, E. Cha. H. Lee, S. Kim, S. Chung, H. Hwang, in 2012 Symposium on VLSI Technology (VLSIT) (IEEE, 2012)Google Scholar
  5. 5.
    Z. Wang, J. Saumil, S. Savel’Ev, E. Sergey, H. Jiang, R. Midya, P. Lin, M. Hu, N. Ge, S. John Paul, Z. Li, Nat. Mater. 16, 1 (2016)Google Scholar
  6. 6.
    A. Bricalli, E. Ambrosi, M. Laudato, M. Maestro, R. Rodriguez, D. Ielmini, IEEE International Electron Devices Meeting, (2017), pp 4.3.1–4.3.4Google Scholar
  7. 7.
    X. Zhao, J. Ma, X. Xiao, Q. Liu, L. Shao, D. Chen, S. Liu, J. Niu, X. Zhang, Y. Wang, Adv. Mater. 30, 14 (2018)ADSGoogle Scholar
  8. 8.
    R. Midya, Z. Wang, J. Zhang, S.E. Savel’Ev, C. Li, M. Rao, M.H. Jang, S. Joshi, H. Jiang, P. Lin, Adv. Mater. 29, 12 (2017)CrossRefGoogle Scholar
  9. 9.
    Z. Wang, M. Rao, R. Midya, J. Saumil, H. Jiang, P. Lin, W. Song, S. Asapu, Y. Zhuo, C. Li, Adv. Func. Mater. 28, 6 (2018)Google Scholar
  10. 10.
    S. Kim, H. Kim, S. Choi, J. Alloys Compd. 667, 91 (2016)CrossRefGoogle Scholar
  11. 11.
    J. Lee, G. Kim, Y. Ahn, W. Ji, S. Ryu, C. Hwang, H. Kim, Appl. Phys. Lett. 100(12), 254002 (2012)Google Scholar
  12. 12.
    M.J. Lee, D. Lee, S.H. Cho, J.H. Hur, S.M. Lee, D.H. Seo, D.S. Kim, M.S. Yang, S. Lee, E. Hwang, Nat. Commun. 4(4), 2629 (2013)CrossRefGoogle Scholar
  13. 13.
    Y.S. Kim, J.W. Park, J.H. Lee, I.A. Choi, J. Heo, H.J. Kim, Appl. Phys. Lett. 111, 183501; (2017)ADSCrossRefGoogle Scholar
  14. 14.
    S. Nardo, L. Lozzi, M. Passacantando, P. Picozzi, S. Santucci, J. Electron Spectrosc. Relat. Phenom. 71(1), 39 (1995)CrossRefGoogle Scholar
  15. 15.
    A.J. Ricco, H.S. White, M.S. Wrighton, J. Vac. Sci. Technol. A 2(4), 910 (1984)ADSCrossRefGoogle Scholar
  16. 16.
    N.F. Mott, Electronic Processes in Non-crystalline Materials (Clarendon Press, Oxford, 1979), p. 55Google Scholar
  17. 17.
    S. Prakash, S. Asokan, D.B. Ghare, IEEE Electron Dev. Lett. 18(2), 45 (1997)ADSCrossRefGoogle Scholar
  18. 18.
    R. Fairman, B. Ushkov, Semiconducting Chalcogenide Glass II—Properties of Chalcogenide Glasses (Elsevier Academic Press, New York, 2004)Google Scholar
  19. 19.
    D. Ielmini, Y. Zhang, J. Appl. Phys. 102(5), 662 (2007)CrossRefGoogle Scholar
  20. 20.
    S. Kim, Y. Kim, K. Kim, S. Kim, in Vlsi Technology (2013), pp. T240-T241Google Scholar
  21. 21.
    D. Ielmini, Phys. Rev. B Condens. Matter 78(3), 1436 (2008)CrossRefGoogle Scholar
  22. 22.
    M. Anbarasu, M. Wimmer, G. Bruns, M. Salinga, M. Wuttig, Appl. Phys. Lett. 100(14), 043108 (2012)CrossRefGoogle Scholar
  23. 23.
    M. Abkowitz, D.M. Pai, Phys. Rev. Lett. 38(24), 1412 (1977)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory for Thin Film and Micro fabrication of the Ministry of Education, Department of Micro/Nano ElectronicsShanghai Jiao Tong UniversityShanghaiPeople’s Republic of China

Personalised recommendations