Advertisement

Applied Physics A

, 124:731 | Cite as

The effect of thickness on the performance of CdSe:Cu2+—quantum dot-sensitized solar cells

  • Dang Huu Phuc
  • Ha Thanh Tung
Article
  • 74 Downloads

Abstract

The role of the thickness in the counter electrodes is one of the most important criteria for determining the photoelectric conversion efficiency. In this study, we report a novel strategy for optimizing the thickness of CdSe:Cu films in the quantum dot-sensitized solar cells by changing the successive ionic layer absorption and reaction cycles. The result shows that there was a sharp increase in photoelectric conversion efficiency from 1.8 to 4.23% with the SILAR cycles of CdSe:Cu films from 1 to 5 layers due to the effect of CdSe:Cu nanoparticles size on the optical and photovoltaic properties of the devices. In addition, the recombination resistances of the devices can be increased when the SILAR cycles of the counter electrodes changed from 1 layer to 5 layers. To study the above mentioned strategy, the dynamic processes were discussed in detail using the values of the dynamic resistances as: external and internal resistances (RD, Rd), series resistance (RS), shunt resistance (RSH) from one illuminated IV curve and resistance movement of charge at the Cu2S/electrolyte and the FTO/TiO2 interface (Rct1), resistance against the electron diffusion in the TiO2 and the charge recombination resistance at the TiO2/QDs/electrolyte interface (Rct2) from electrochemical impedance spectra.

Notes

Compliance with ethical standards

Conflict of interest

The authors declare no competing interests.

References

  1. 1.
    W.S. Yang, B.-W. Park, E.H. Jung, N.J. Jeon, Y.C. Kim, D.U. Lee, S.S. Shin et al., Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells. Science 356(6345), 1376–1379 (2017)ADSCrossRefGoogle Scholar
  2. 2.
    W. Zhao, S. Li, H. Yao, S. Zhang, Y. Zhang, B. Yang, J. Hou, Molecular optimization enables over 13% efficiency in organic solar cells. J. Am. Chem. Soc. 139(21), 7148–7151 (2017)CrossRefGoogle Scholar
  3. 3.
    Y. Yamada, T. Yamada, Y. Kanemitsu, Free carrier radiative recombination and photon recycling in lead halide perovskite solar cell materials. Bull. Chem. Soc. Jpn. 90(10), 1129–1140 (2017)CrossRefGoogle Scholar
  4. 4.
    P. Pinpithak, A. Kulkarni, H.-W. Chen, M. Ikegami, T. Miyasaka, Solid-state thin-film dye-sensitized solar cell co-sensitized with methylammonium lead bromide perovskite. Bull. Chem. Soc. Jpn. 91(5), 754–760 (2018)CrossRefGoogle Scholar
  5. 5.
    I. Robel, V. Subramanian, M. Kuno, P.V. Kamat, J. Am. Chem. Soc. 128(7), 2385–2393 (2006)CrossRefGoogle Scholar
  6. 6.
    V. Jovanovski, V. González-Pedro, S. Giménez, E. Azaceta, G. Cabanero, H. Grande, R. Tena-Zaera, I. Mora-Seró, J. Bisquert, J. Am. Chem. Soc. 133(50), 20156–20159 (2011)CrossRefGoogle Scholar
  7. 7.
    M.C. Beard, G. Aaron, M.C. Midgett, J.M. Hanna, B.K. Luther, Hughes, A.J. Nozik, Nano Lett. 10(8), 3019–3027 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    T. Lopez-Luke, A. Wolcott, L. Xu, S. Chen, Z. Wen, J. Li, E. De La Rosa, Z. Jin, Zhang, J. Phys. Chem. C 112(4), 1282–1292 (2008)CrossRefGoogle Scholar
  9. 9.
    J.-K. Sun, Y. Jiang, X. Zhong, J.-S. Hu, L.-J. Wan, Three-dimensional nanostructured electrodes for efficient quantum-dot-sensitized solar cells. Nano Energy 32, 130–156 (2017)CrossRefGoogle Scholar
  10. 10.
    T. Watanabe, K. Takahashi, K. Shimura, H.-B. Bu, K. Hyeon-Deuk, D. Kim, Synthesis of Type-I CdTe core and type-II CdTe/CdS core/shell quantum dots by a hydrothermal method and their optical properties. Bull. Chem. Soc. Jpn. 90(1), 52–58 (2016)CrossRefGoogle Scholar
  11. 11.
    R.W. Crisp, F.G. Pach, J.M. Kurley, R.M. France, M.O. Reese, S.U. Nanayakkara, B.A. MacLeod, D.V. Talapin, M.C. Beard, J.M. Luther, Tandem solar cells from solution-processed CdTe and PbS quantum dots using a ZnTe–ZnO tunnel junction. Nano Lett. 17(2), 1020–1027 (2017)ADSCrossRefGoogle Scholar
  12. 12.
    I. Mora-Seró, S. Giménez, T. Moehl, F. Fabregat-Santiago, T. Lana-Villareal, R. Gómez, J. Bisquert, Nanotechnology 19(42), 424007 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    Q. Shen, J. Kobayashi, L.J. Diguna, T. Toyoda, J. Appl. Phys. 103(8), 084304 2008ADSCrossRefGoogle Scholar
  14. 14.
    J.-W. Lee, D.-Y. Son, T.K. Ahn, H.-W. Shin, I.Y. Kim, S.-J. Hwang, M.J. Ko, S. Sul, H. Han, N.-G. Park, Sci. Rep. 3, 1050 (2013)CrossRefGoogle Scholar
  15. 15.
    P.K. Santra, V.K. Prashant, J. Am. Chem. Soc. 134(5), 2508–2511 (2012)CrossRefGoogle Scholar
  16. 16.
    G. Zhu, L. Pan, T. Xu, Z. Sun, ACS Appl. Mater. Interfaces 3(8), 3146–3151 (2011)CrossRefGoogle Scholar
  17. 17.
    Y.H. Lee, S.H. Im, J.A. Chang, J.-H. Lee, S.I. Seok, Org. Electron. 13(6), 975–979 (2012)CrossRefGoogle Scholar
  18. 18.
    M.A. Hossain, J.R. Jennings, C. Shen, J.H. Pan, Z.Y. Koh, N. Mathews, Q. Wang, J. Mater. Chem. 22(32), 16235–16242 (2012)CrossRefGoogle Scholar
  19. 19.
    J. Wang, I. Mora-Seró, Z. Pan, K. Zhao, H. Zhang, Y. Feng, G. Yang, X. Zhong, J. Bisquert, J. Am. Chem. Soc. 135(42), 15913–15922 (2013)CrossRefGoogle Scholar
  20. 20.
    J.G. Radich, N.R. Santra, P.K. Peeples, P.V. Kamat, J. Phys. Chem. C 118(30), 16463–16471 (2014)CrossRefGoogle Scholar
  21. 21.
    K. Yan, L. Zhang, J. Qiu, Y. Qiu, Z. Zhu, J. Wang, S. Yang, J. Am. Chem. Soc. 135(25), 9531–9539 (2013)CrossRefGoogle Scholar
  22. 22.
    J. Tian, L. Lv, C. Fei, Y. Wang, X. Liu, G. Cao, J. Mater. Chem. A 2(46), 19653–19659 (2014)CrossRefGoogle Scholar
  23. 23.
    W. Zhang, Y. Han, X. Luo, X. Wang, J. Yue, T. Li, Surface molecularly imprinted polymer capped Mn-doped ZnS quantum dots as a phosphorescent nanosensor for detecting patulin in apple juice. Food Chem. 232, 145–154 (2017)CrossRefGoogle Scholar
  24. 24.
    K. Zhang, S. Lv, Z. Lin, D. Tang. CdS:Mn quantum dot-functionalized g-C3N4 nanohybrids as signal-generation tags for photoelectrochemical immunoassay of prostate specific antigen coupling DNAzyme concatamer with enzymatic biocatalytic precipitation. Biosens. Bioelectron. 95, 34–40 (2017)CrossRefGoogle Scholar
  25. 25.
    W. Jin, L. Yan, S. Qing, Mn doped quantum dot sensitized solar cells with power conversion efficiency exceeding 9%. Mater. Chem. A 4, 877–884 (2016)CrossRefGoogle Scholar
  26. 26.
    M.V. Haritha, V.V. Chandu, M. Gopi, Influence of Mn+2 incorporation in CdSe quantum dots for high performance of CdS–CdSe quantum dot sensitized solar cells. J. Photochem. Photobiol. A 315, 34–41 (2016)CrossRefGoogle Scholar
  27. 27.
    S.K. Kim, C.V. Gopi, J.C. Lee, H.J. Kim, Enhanced performance of branched TiO2 nanorod based Mn-doped CdS and Mn-doped CdSe quantum dot-sensitized solar cell. J. Appl. Phys. 117, 877–885 (2015)Google Scholar
  28. 28.
    Y.-L. Lee, Y.-S. Lo, Adv. Funct. Mater. 19(4), 604–609 (2009)CrossRefGoogle Scholar
  29. 29.
    Y.-L. Xie, Electrochim. Acta 105, 137–141 (2013)CrossRefGoogle Scholar
  30. 30.
    C. Xing, Y. Zhang, W. Yan, L. Guo, Int. J. Hydrogen Energy 31(14), 2018–2024 (2006)CrossRefGoogle Scholar
  31. 31.
    M. Askari, N. Soltani, E. Saion, W. Mahmood Mat, H. Yunus, M. Erfani, M. Dorostkar, Superlattices Microstruct. 81, 193–201 (2015)ADSCrossRefGoogle Scholar
  32. 32.
    T.T. Ha, Q.V. Lam, T.D. Huynh, J. Nanomater. 2016, 36 (2016)CrossRefGoogle Scholar
  33. 33.
    T.T. Ha, C.H. Chi, N.T. Vy, N.T. Thoa, T.D. Huynh, Q.V. Lam, Environ. Prog. Sustain. Energy 34(6), 1774–1779 (2015)CrossRefGoogle Scholar
  34. 34.
    T.H. Thanh, L.Q. Vinh, H.T. Dat, Sol. Energy Mater. Sol. Cells 143, 269–274 (2015)CrossRefGoogle Scholar
  35. 35.
    T.H. Thanh, L.Q. Vinh, H.T. Dat, Braz. J. Phys. 44(6), 746–752 (2014)ADSCrossRefGoogle Scholar
  36. 36.
    M.P.A. Muthalif, Y.-S. Lee, C.D. Sunesh, H.-J. Kim, Y. Choe, Enhanced photovoltaic performance of quantum dot-sensitized solar cells with a progressive reduction of recombination using Cu-doped CdS quantum dots. Appl. Surf. Sci. 396, 582–589 (2017)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Theoretical Physics Research Group, Advanced Institute of Materials ScienceTon Duc Thang UniversityHo Chi Minh CityVietnam
  2. 2.Faculty of Applied SciencesTon Duc Thang UniversityHo Chi Minh CityVietnam
  3. 3.Institute of Research and DevelopmentDuy Tan UniversityDa NangVietnam

Personalised recommendations