Applied Physics A

, 124:732 | Cite as

Investigation of several essential display features for the low birefringent nematic liquid crystal dispersed with polymer

  • Govind Pathak
  • Ayushi Rastogi
  • Bhupendra Pratap Singh
  • Atul Srivastava
  • Olga Strzezysz
  • Rajiv ManoharEmail author


In this investigation, we have reported some important electro-optical and dielectric parameters for pure nematic liquid crystal (NLC) and polymer-dispersed system. The used liquid crystal in the present investigation is NLC 1550C, consisting of 4′-(trans, trans-4-alkylbicyclohexyl) carbonates and 4′-(4-(trans, trans-4-alkyl)-4-cyanobicyclohexane which is low birefringent material. The dopant used here is polyaniline (PANI). Birefringence has been decreased after the dispersion of polyaniline. Fast optical response time has also been observed for the PANI dispersed system which is the key finding of this investigation, because fast optical response is necessary for any display devices. Splay elastic constant and rotational viscosity have also been calculated and we have found that both parameters are decreasing after the dispersion of polyaniline. We have also calculated threshold voltage and found to be decreased. Relative permittivity has been enhanced for PANI dispersed system. Dielectric anisotropy has also been measured and found to be increased after the dispersion of PANI into the pure NLC. Figure-of-Merit (FoM) is also a very important parameter for display; therefore, we have also calculated FoM which has been decreased for the dispersed system. The output of the present work may be useful in making or enhancing the features of liquid crystal displays and in other energy-efficient devices.



The authors are thankful to DST for grant of Indo-Polish Project and UPCST for grant of project. Authors are also thankful to APJ ABDUL KALAM CENTER FOR INNOVATION for experimental facilities.


  1. 1.
    J.Y. Wang, A. Mo, Q. Jiang, Liquid crystal display panel fabricated in dual mode. J. Info. Disp. 13, 17 (2012)CrossRefGoogle Scholar
  2. 2.
    H.K. Hong, H.H. Shin, I.J. Chung, In-plane switching technology for liquid crystal display television. J. Disp. Tech. 3, 361 (2007)CrossRefGoogle Scholar
  3. 3.
    Y.J. Lim, S.J. Shin, N.H. Cho, S.S. Bhattacharyya, K.H. Park, J.H. Lee, B.K. Kim, S.H. Lee, High performance transflective liquid crystal display associated with fringe-field switching device. Opt. Express 19, 8085 (2011)ADSCrossRefGoogle Scholar
  4. 4.
    K.H. Kim, E.Y. Jeon, B.W. Park, S.W. Choi, D.H. Song, H. Kim, K.C. Shin, H.S. Kim, T.H. Yoon, High-transmittance multi-domain vertical alignment liquid crystal device with protrusion structure. J. Opt. Soc. Korea 16, 166 (2012)CrossRefGoogle Scholar
  5. 5.
    P.C. Wu, L.N. Lisetski, W. Lee, Suppressed ionic effect and low-frequency texture transitions in a cholesteric liquid crystal doped with graphene nanoplatelets. Opt. Express 23, 11195 (2015)ADSCrossRefGoogle Scholar
  6. 6.
    T. Vimal, D.P. Singh, S.K. Gupta, S. Pandey, K. Agrahari, R. Manohar, Thermal and optical study of semiconducting CNTs-doped nematic liquid crystalline material. Phase Trans. 89, 632–642 (2015)CrossRefGoogle Scholar
  7. 7.
    R. Manohar, A.K. Misra, A.K. Srivastava, Polymer induced improvements in ferroelectric liquid crystal. Polym. Comp. 31, 1776 (2010)CrossRefGoogle Scholar
  8. 8.
    D. Venkata Sai, P. Sathyanarayana, V.S.S. Sastry, J. Herman, P. Kula, R. Dabrowski, S. Dhara, Birefringence, permittivity, elasticity and rotational viscosity of ambient temperature, high birefringent nematic liquid crystal mixtures. Liq. Cryst. 41, 591–596 (2014)CrossRefGoogle Scholar
  9. 9.
    M. Pande, P.K. Tripathi, S.K. Gupta, R. Manohar, S. Singh, Enhancement of birefringence of liquid crystals with dispersion of poly (n-butyl methacrylate) (PBMA). Liq. Cryst. 42, 1465–1471 (2015)CrossRefGoogle Scholar
  10. 10.
    J.-W. Han, Temperature dependence of electro-optical characteristics of polymer dispersed liquid crystal films. Liq. Cryst. 28, 1487–1493 (2001)CrossRefGoogle Scholar
  11. 11.
    S. Pandey, S.K. Gupta, D.P. Singh, T. Vimal, P.K. Tripathi, A. Srivastava, R. Manohar, Effects of polymer doping on dielectric and electro-optical parameters of nematic liquid crystal. Poly. Eng. Sci. 52, 414 (2015)CrossRefGoogle Scholar
  12. 12.
    R. Kumar, K.K. Raina, Polarization switching and molecular relaxation behavior of anthraquinone dye dispersed polymer-stabilised ferroelectric liquid crystal composites. Liq. Cryst. 42, 18–23 (2015)CrossRefGoogle Scholar
  13. 13.
    R. Kumar, K.K. Raina, Electrically modulated fluorescence in optically active polymer stabilised cholesteric liquid crystal shutter. Liq. Cryst. 41, 228–233 (2014)CrossRefGoogle Scholar
  14. 14.
    K.J. Yang, D.Y. Yoon, Electro-optical characteristics of dye-doped polymer dispersed liquid crystals. J. Ind. Eng. Chem. 17, 543 (2011)CrossRefGoogle Scholar
  15. 15.
    J.I. Sohn, W.K. Hong, S.S. Choi, H.J. Coles, M.E. Welland, S.N. Cha, J.M. Kim, Emerging applications of liquid crystals based on nanotechnology. Materials 7, 2044 (2014)ADSCrossRefGoogle Scholar
  16. 16.
    T. Zhang, Y. Cong, B. Zhang, Multistable polymer stabilised cholesteric liquid crystal: exceeding reflection limit in visible region. Liq. Cryst. 41, 1778–1782 (2014)CrossRefGoogle Scholar
  17. 17.
    R. Dabrowski, J. Dziaduszek, Z. Stolarz, J. Kedzierski, Liquid crystalline materials with low ordinary index. J. Opt. Technol. 72, 662–667 (2005)ADSCrossRefGoogle Scholar
  18. 18.
    T.R. Wolinski, A. Czapla, S. Ertman, M. Tefelska, A. Momanski, J. Wojcik, E. Nowinowski-Kruszelnicki, R. Dabrowski, IEEE Trans. Instrum. Meas. 57, 1796–1802 (2008)CrossRefGoogle Scholar
  19. 19.
    G. Pathak, R. Katiyar, K. Agrahari, A. Srivastava, R. Dabrowski, K. Garbat, R. Manohar, Analysis of birefringence property of three different nematic liquid crystals dispersed with TiO2 nanoparticles. Opto Electron. Rev. 26, 11–18 (2017)CrossRefGoogle Scholar
  20. 20.
    R.K. Sonker, B.C. Yadav, G.I. Dzhardimalieva, Preparation and properties of nanostructured PANI thin film and its application as low temperature NO2 sensor. J. Inorg. Organomet. Polym. 26, 1428–1433 (2016)CrossRefGoogle Scholar
  21. 21.
    R.K. Sonker, S.R. Sabhajeet, B.C. Yadav, TiO2–PANI nanocomposite thin film prepared by spin coating technique working as room temperature CO2 gas sensing. J. Mater. Sci. Mater. Electron. 27, 11726–11732 (2016)CrossRefGoogle Scholar
  22. 22.
    R.K. Sonker, B.C. Yadav, S.R. Sabhajeet, Preparation of PANI doped TiO2 nanocomposite thin film and its relevance as room temperature liquefied petroleum gas sensor. J. Mater. Sci. Mater. Electron. 28, 14471–14475 (2017)CrossRefGoogle Scholar
  23. 23.
    G. Pathak, K. Agrahari, G. Yadav, A. Srivastava, O. Strzezysz, R. Manohar, Tuning of birefringence, response time, and dielectric anisotropy by the dispersion of fluorescent dye into the nematic liquid crystal. Appl. Phys. A 124, 463 (2018)ADSCrossRefGoogle Scholar
  24. 24.
    T. Vimal, S. Pandey, S.K. Gupta, D.P. Singh, K. Agrahari, G. Pathak, S. Kumar, P.K. Tripathi, R. Manohar, Manifestation of strong magneto-electric dipolar coupling in ferromagnetic nanoparticles—FLC composite: evaluation of time-dependent memory effect. Liq. Cryst. 45, 1–12 (2017)Google Scholar
  25. 25.
    G. Pathak, S. Pandey, R. Katiyar, A. Srivastava, R. Dabrowski, K. Garbat, R. Manohar, Analysis of photoluminescence, UV absorbance, optical band gap and threshold voltage of TiO2 nanoparticles dispersed in high birefringence nematic liquid crystal towards its application in display and photovoltaic devices. J. Lumin. 192, 33–39 (2017)CrossRefGoogle Scholar
  26. 26.
    S. Pandey, T. Vimal, D.P. Singh, S.K. Gupta, G. Pathak, R. Katiyar, R. Manohar, Core/shell quantum dots in ferroelectric liquid crystals matrix: effect of spontaneous polarisation coupling with dopant. Liq. Cryst. 43, 980–993 (2016)CrossRefGoogle Scholar
  27. 27.
    L.M. Blinov, V.G. Chigrinov, Electrooptic effects in liquid crystal materials (Springer-Verlag, New York, 1996)Google Scholar
  28. 28.
    P.K. Tripathi, M. Pande, S. Singh, Dielectric and electro-optical properties of polymer-stabilized liquid crystal. II. Polymer PiBMA dispersed in MBBA. Appl. Phys. A 122, 847–853 (2016)ADSCrossRefGoogle Scholar
  29. 29.
    S.T. Wu, A.M. Lackner, U. Efron, Optimal operation temperature of liquid crystal modulators. Appl. Opt. 26(16), 3441–3445 (1987)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Govind Pathak
    • 1
  • Ayushi Rastogi
    • 1
  • Bhupendra Pratap Singh
    • 1
  • Atul Srivastava
    • 1
  • Olga Strzezysz
    • 2
  • Rajiv Manohar
    • 1
    Email author
  1. 1.Liquid Crystal Research Lab, Department of PhysicsUniversity of LucknowLucknowIndia
  2. 2.Liquid Crystal GroupMilitary University of TechnologyWarsawPoland

Personalised recommendations