Advertisement

Applied Physics A

, 124:815 | Cite as

Tailoring the properties of zinc oxide films by incorporating gold nanoparticles using RF magnetron sputtering

  • R. Sreeja Sreedharan
  • V. S. Kavitha
  • S. Suresh
  • R. Reshmi Krishnan
  • R. Jolly Bose
  • V. P. Mahadevan Pillai
Article
  • 69 Downloads

Abstract

Nanoscale noble metal-incorporated ZnO nanostructures can have potential applications in developing chemical and biological sensors, optical filters, ultrafast switching devices, etc. The structural, morphological and optical properties of the as-deposited pure and Au-incorporated RF-sputtered ZnO films were investigated. XRD analysis suggests that the presence of Au nanoparticles strongly promotes the growth of well-crystalline grains of ZnO along \(\left\langle {00{\text{1}}} \right\rangle\) direction. Surface morphology examined using AFM and FESEM micrographs and compositional analysis using EDX spectra reveal that Au acts as a nucleating center for the growth of high-crystalline grains, leading to the formation of specific structures. The observed reduction in transmittance with Au incorporation concentration can be attributed to LSPR of gold nanoparticles, scattering, increased surface roughness and increased thicknesses of the films. Systematic increase in the intensity of the plasmonic peak along with a shift in its position towards longer wavelength region is observed with increase in Au incorporation concentration. The PL spectra of the films show a NBE emission due to excitonic transition in ZnO and blue emission originating from deep-level defects in ZnO. The influence of Au nanoparticles on the crystallization of ZnO grains, evolution of surface morphology of ZnO nanostructured films and modification in the UV emission efficiency of ZnO films due to SPR of Au nanoparticles are studied in detail.

References

  1. 1.
    B. Cheng, E.T. Samulski, Chem. Commun. 986–987 (2004).  https://doi.org/10.1039/B316435G
  2. 2.
    B. Liu, H.C. Zeng, J. Am. Chem. Soc. 126, 16744–16746 (2004).  https://doi.org/10.1021/ja044825a CrossRefGoogle Scholar
  3. 3.
    Q.C. Li, V. Kumar, Y. Li, H.T. Zhang, T.J. Marks, R.P.H. Chang, Chem. Mater. 17, 1001–1006 (2005). doi. https://doi.org/10.1021/cm048144q CrossRefGoogle Scholar
  4. 4.
    L. Li, S. Pan, X. Dou, Y. Zhu, X. Huang, Y. Yang, G. Li, L. Zhang, J. Phys. Chem. C 111(20), 7288–7291 (2007).  https://doi.org/10.1021/jp0711242 CrossRefGoogle Scholar
  5. 5.
    D. Vernardou, G. Kenanakis, S. Couris, E. Koudoumas, E. Kymakis, N. Katsaraki, Thin Solid Films 515, 8764–8767 (2007).  https://doi.org/10.1016/j.tsf.2007.03.108
  6. 6.
    J.P. Liu, X.T. Huang, Y.Y. Li, J.X. Duan, H.H. Ai, Mater. Sci. Eng. B 127, 85–90 (2006)CrossRefGoogle Scholar
  7. 7.
    J.P. Liu, X.T. Huang, Y.Y. Li, J.X. Duan, H.H. Ai, Mater. Chem. Phys. 98, 523–527 (2006)CrossRefGoogle Scholar
  8. 8.
    X.J. Wang, W. Wang, Y.L. Liu, Sens. Actuators B 168, 39–45 (2012).  https://doi.org/10.1016/j.snb.2012.01.006 CrossRefGoogle Scholar
  9. 9.
    G.C. Yi, C.Wang and W.I.I. Park, Semicond. Sci. Technol. 20, S22–S34 (2005)CrossRefGoogle Scholar
  10. 10.
    M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, Science 292, 1897–1899 (2001).  https://doi.org/10.1126/science.1060367 ADSCrossRefGoogle Scholar
  11. 11.
    Z.W. Pan, Z.R. Dai, Z.L. Wang, Science 291, 1947–1949 (2001)ADSCrossRefGoogle Scholar
  12. 12.
    W.I. Park, Y.H. Jun, S.W. Jung, G.C. Yi, Appl. Phys. Lett. 82, 964 (2003)ADSCrossRefGoogle Scholar
  13. 13.
    Z. Wang, R. Yu, C. Pan, Z. Li, J. Yang, F. Yi, Z.L. Wang, Nat. Commun. 6, 8401 (2015).  https://doi.org/10.1038/ncomms9401 ADSCrossRefGoogle Scholar
  14. 14.
    S.W. Kim, S. Fujita, S. Fujita, Appl. Phys. Lett. 86, 153119 (2005).  https://doi.org/10.1063/1.1883320 ADSCrossRefGoogle Scholar
  15. 15.
    Y. Yang, D.S. Kim, R. Scholz, M. Knez, S.M. Lee, U. Gçsele, M. Zacharias, Chem. Mater. 20, 3487 (2008)CrossRefGoogle Scholar
  16. 16.
    W. Xu, Z. Ye, L. Zhu, Y. Zeng, L. Jiang, B.J. Zhao, Cryst. Growth Des. 277, 490 (2005)ADSCrossRefGoogle Scholar
  17. 17.
    W. Chen, J. Wang, M. Wang, Vacuum 81, 894–898 (2007).  https://doi.org/10.1063/1.2211047 ADSCrossRefGoogle Scholar
  18. 18.
    T. Zhang, Y. Zeng, H.T. Fan, L.J. Wang, R. Wang, W.Y. Fu, H.B. Yang, J. Phys. D Appl. Phys. 42, 045103 (2009).  https://doi.org/10.1088/0022-3727/42/4/045103 ADSCrossRefGoogle Scholar
  19. 19.
    B.I. Kharisov, R. Pat, Nanotechnology 2, 190 (2008)Google Scholar
  20. 20.
    Z. Wang, X.F. Qian, J. Yin, Z.K. Zhu, Langmuir 20(8), 3441–3448 (2004)CrossRefGoogle Scholar
  21. 21.
    J.X. Wang, X.W. Sun, Y. Yang, H. Huang, Y.C. Lee, O.K. Tan, L. Vayssieres, Nanotechnology 17, 4995–4998 (2006)ADSCrossRefGoogle Scholar
  22. 22.
    P.K. Giri, S. Bhattacharyya, B. Chetia, S. Kumari, P.K. Iyer, J. Nanosci. Nanotechnol. 12, 201–206 (2012)CrossRefGoogle Scholar
  23. 23.
    D. Deng, S.T. Matin, S. Ramanathan, Nanoscale 2, 2685–2691 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    P. Zhang, F. Xu, A. Navrotsky, J.S. Lee, S. Kim, J. Liu, Chem. Mater. 19, 5687–5693 (2007)CrossRefGoogle Scholar
  25. 25.
    N. Illyaskutty, S. Sreedhar, H. Kohler, R. Philip, V. Rajanand, V.P. Mahadevan Pillai, J. Phys. Chem. C 117, 7818 (2013).  https://doi.org/10.1021/jp311394y CrossRefGoogle Scholar
  26. 26.
    J.T. Zhang, Y. Tang, K. Lee, M. Ouyang, Science 327, 1634 (2010)ADSCrossRefGoogle Scholar
  27. 27.
    Z.H. Sun, Z. Yang, J.H. Zhou, M.H. Yeung, Ni, W.H..Wu, H.K., Wang, J. F. Angew. Chem. Int. Ed. 48 (2009)Google Scholar
  28. 28.
    G. Menagen, J.E. Macdonald, Y. Shemesh, I. Popov, U.J. Banin, Am. Chem. Soc. 131, 17406 (2009)CrossRefGoogle Scholar
  29. 29.
    J. Zeng, J.L. Huang, C.H. Wu, Y. Lin, X.P. Wang, S.Y. Zhang, J.G. Hou, Y.N. Xia, Adv. Mater. 22, 1936 (2010)CrossRefGoogle Scholar
  30. 30.
    P. Li, Z. Wei, T. Wu, Q. Peng, Y. Li, J. Am. Chem. Soc. 133, 5660–5663 (2011).  https://doi.org/10.1021/ja111102u
  31. 31.
    T. Asefa, C.T. Duncan, K.K. Sharma, Analyst 134, 1980–1990 (2009).  https://doi.org/10.1039/B911965P ADSCrossRefGoogle Scholar
  32. 32.
    R. Elghanian, J.J. Storhoff, R.C. Mucic, R.L. Letsinger, C.A. Mirkin, Science 277, 1078–1080 (1997)CrossRefGoogle Scholar
  33. 33.
    C.J. Murphy, T.K. Sau, A.M. Gole, C.J. Orendorff, J. Gao, L. Gou, S.E. Hunyadi, T. Li, Phys. Chem. B 109, 13857–13870 (2005)CrossRefGoogle Scholar
  34. 34.
    Y. Dirix, C. Bastiaansen, W. Caseri, P. Smith, Adv. Mater. 11, 223–227 (1999)CrossRefGoogle Scholar
  35. 35.
    D.L. Feldheim Jr., C.A. Foss, Metal Nanoparticles. New York: Dekker (2002)Google Scholar
  36. 36.
    R.F. Haglund Jr., R.H. Yang III, J.E. Magruder, K. Wittig, K.R.A. Zuhr, Opt. Lett. 18, 373–375 (1993)ADSCrossRefGoogle Scholar
  37. 37.
    M.C. Daniel, D. Astruc, Chem. Rev. 104, 293–346 (2004)CrossRefGoogle Scholar
  38. 38.
    X.Y. Li, H.J. Li, Z.J. Wang, H. Xia, Z.Y. Xiong, J.X. Wang, B.C. Yang, Opt. Commun. 282, 247–252 (2009).  https://doi.org/10.1016/j.optcom.2008.10.003 ADSCrossRefGoogle Scholar
  39. 39.
    S. Mohapatra, Y.K. Mishra, D.K. Avasthi, D. Kabiraj, J. Ghatak, S. Varma, Appl. Phys. Lett. 92, 103105 (2008).  https://doi.org/10.1063/1.2894187 ADSCrossRefGoogle Scholar
  40. 40.
    Y.K. Mishra, S. Mohapatra, R. Singhal, D.K. Avasthi, D.C. Agarwal, S.B. Ogale, Appl. Phys. Lett. 92, 043107 (2008).  https://doi.org/10.1063/1.2838302 ADSCrossRefGoogle Scholar
  41. 41.
    C.C. Lin, H.P. Chen, H.C. Liao, S.Y. Chen, Appl. Phys. Lett. 86(18), 118 (2005)CrossRefGoogle Scholar
  42. 42.
    S.M. Liu, F.Q. Liu, Z.G. Wang, Chem. Phys. Lett. 343, 489–492 (2001).  https://doi.org/10.1016/S0009-2614(01)00740-0 ADSCrossRefGoogle Scholar
  43. 43.
    M. Liu, S.W. Qu, Y. Bao, C.Y. Ma, Q.Y. Zhang, J. He, J.C. Jiang, E.I. Meletis, C.L. Chen, W.W. Yu, Appl. Phys. Lett. 97, 231906 (2010).  https://doi.org/10.1063/1.3525171 ADSCrossRefGoogle Scholar
  44. 44.
    S. Thomas Kochuveedu, J.H. Oh, Y.R. Do, D.H. Kim, Chem. Eur. J. 18, 7467–7472 (2012).  https://doi.org/10.1002/chem.201200054 CrossRefGoogle Scholar
  45. 45.
    K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, A. Scherer, Nat. Mater. 3, 601–605 (2004).  https://doi.org/10.1038/nmat1198 ADSCrossRefGoogle Scholar
  46. 46.
    T.D. Neal, K. Okamoto, A. Scherer, Opt. Express 13(14), 5522–5552 (2005).  https://doi.org/10.1364/OPEX.13.005522 ADSCrossRefGoogle Scholar
  47. 47.
    R. SreejaSreedharan, R. ReshmiKrishnan, R. JollyBose, V.S. Kavitha, S. Suresh, R. Vinodkumar, S.K. Sudheer, V.P. MahadevanPillai, J. Luminescence 184, 273–286 (2017).  https://doi.org/10.1016/j.jlumin.2016.12.032 ADSCrossRefGoogle Scholar
  48. 48.
    R. Sreeja Sreedharan, V. Ganesan, C. Sudarsanakumar, K. Bhavsar, R. Prabhu, V.P. Mahadevan, Pillai, Nano Rev. 6, 26759 (2015).  https://doi.org/10.3402/nr.v6.26759 CrossRefGoogle Scholar
  49. 49.
    R. Sreeja Sreedharan, R. Vinodkumar, I. Navas, R. Prabhu, V.P. Mahadevan Pillai, The minerals. Met. Mater. Soc. JOM 68, 341 (2016).  https://doi.org/10.1007/s11837-015-1632-0 CrossRefGoogle Scholar
  50. 50.
    B.D. Cullity, S.R. Stock, Elements of X-ray Diffraction in Diffraction III: Real Samples, 3rd edn. (Addison-Wesley, Chap. 5, 1978), p. 170Google Scholar
  51. 51.
    M.K. Lee, T.G. Kim, W. Kim, Y.M. Sung, J. Phys. Chem. C 112, 10079–10082 (2008).  https://doi.org/10.1021/jp8018809 CrossRefGoogle Scholar
  52. 52.
    R.L. Hoffman, B.J. Norris, J.F. Wagner, Appl. Phys. Lett. 82, 733 (2003),  https://doi.org/10.1063/1.1542677
  53. 53.
    J. Jie, A. Morita, H. Shirai, J. Appl. Phys. 108, 033521 (2010).  https://doi.org/10.1063/1.3457867 ADSCrossRefGoogle Scholar
  54. 54.
    C. Kittel, Introduction to Solid State Physics, 8th edn. (Wiley, New York, 2005), p. 82Google Scholar
  55. 55.
    M.K. Puchert, P.Y. Timbrell, R.N. Lamb, J. Vac. Sci. Technol. A 14, 2220 (1996).  https://doi.org/10.1116/1.580050 ADSCrossRefGoogle Scholar
  56. 56.
    Y. Wang, W. Tang, J. Liu, L. Zhang, Appl. Phys. Lett. 106, 162101 (2015).  https://doi.org/10.1063/1.4918933 ADSCrossRefGoogle Scholar
  57. 57.
    R.S. Zeferino, M.B. Flores, U. Pal, J. Appl. Phys. 109, 014308 (2011).  https://doi.org/10.1063/1.3530631 ADSCrossRefGoogle Scholar
  58. 58.
    R.K. Sendi, S. Mahmud, Appl. Surf. Sci. 258, 8026–8031 (2012)ADSCrossRefGoogle Scholar
  59. 59.
    J. Frederic Decremps, A. Pellicer-Porres, M. Saitta, J.-C. Chervin, A. Polian, Phys. Rev. B 65, 092101 (2002)ADSCrossRefGoogle Scholar
  60. 60.
    C. Bundesmann, N. Ashkenov, M. Schubert, D. Spemann, T. Butz, E.M. Kaidashev, M. Lorenz, M. Grundmann, Appl. Phys. Lett. 10, 1974–1977 (2003).  https://doi.org/10.1063/1.1609251 ADSCrossRefGoogle Scholar
  61. 61.
    T. Chen, G.Z. Xing, Z. Zhang, H.Y. Chen, T. Wu, Nanotechnology 19, 435711 (2008).  https://doi.org/10.1088/0957-4484/19/43/ ADSCrossRefGoogle Scholar
  62. 62.
    G. Epurescu, R. Birjega, A.C. Galca, Appl. Phys. A 104, 889–893 (2011).  https://doi.org/10.1007/s00339-011-6433-x ADSCrossRefGoogle Scholar
  63. 63.
    S. Basu, S.K. Ghosh, S. Kundu, S. Panigrahi, S. Praharaj, S. Pande, S. Jana, T. Pal, J. Colloid Interface Sci. 313, 724 (2007).  https://doi.org/10.1016/j.jcis.2007.04.069 ADSCrossRefGoogle Scholar
  64. 64.
    R. Jolly Bose, V.S. Kavitha, C. Sudarsanakumar, V.P. Mahadevan Pillai, Appl. Surf. Sci. 379, 505–515 (2016).  https://doi.org/10.1016/j.apsusc.2016.04.100 ADSCrossRefGoogle Scholar
  65. 65.
    N.L. Tarwal, R.S. Devan, Y.R. Mab, R.S. Patil, M.M. Karanjkar, P.S. Patil, Electrochim. Acta 72, 32–39 (2012).  https://doi.org/10.1016/j.electacta.2012.03.135 CrossRefGoogle Scholar
  66. 66.
    S. Chu, J. Ren, D. Yan, J. Huang, J. Liu, Appl. Phys. Lett. 101, 04312 (2012).  https://doi.org/10.1063/1.4739516 CrossRefGoogle Scholar
  67. 67.
    J.N. Anker, W.P. Hall, O. Lyandres, N.C. Shah, J. Zhao, R. Van Duyne, Nat. Mater. 7, 442 (2008).  https://doi.org/10.1038/nmat2162 ADSCrossRefGoogle Scholar
  68. 68.
    S.A. Maier, H.A. Atwater, J. Appl. Phys. 98, 011101 (2005).  https://doi.org/10.1063/1.1951057 ADSCrossRefGoogle Scholar
  69. 69.
    M.I. Stockman, Phys. Today 64, 39 (2011).  https://doi.org/10.1063/1.3554315 CrossRefGoogle Scholar
  70. 70.
    U. Kreibig, M. Vollmer, Optical Properties of Metal Clusters, Springer Series in Material Science (Springer, Berlin, 1995)CrossRefGoogle Scholar
  71. 71.
    L. Wang, Y. Sun, J. Wang, J. Wang, A. Yu, H. Zhang, D. Song, J. Colloid Interface Sci. 351, 392 (2010)ADSCrossRefGoogle Scholar
  72. 72.
    F. Gonella, P. Mazzoldi, Metal nanocluster composite glasses, in: H.S. Nalwa (ed), Handbook of Nanostructured Materials and Nanotechnology, vol 4 (Academic Press, San Diego, 2000) p. 8.  https://doi.org/10.1016/B978-012513760-7/50044-7 CrossRefGoogle Scholar
  73. 73.
    T. Som, B. Karmakar, Appl. Surf. Sci. 255, 9447 (2009)ADSCrossRefGoogle Scholar
  74. 74.
    H. Huang, Y. Ou, S. Xu, G. Fang, M. Li, X.Z. Zhao, Appl. Surf. Sci. 254, 2013–2016 (2008)ADSCrossRefGoogle Scholar
  75. 75.
    J.R. Rani, V.P. Mahadevan Pillai, R.S. Ajimsha, M.K. Jayaraj, R.S. Jayasree, J. Appl. Phys. 100, 014302 (2006)ADSCrossRefGoogle Scholar
  76. 76.
    Y.M. Sun, Ph. D. Thesis (University of Science and Technology of China, 2000)Google Scholar
  77. 77.
    Y. Harada, I. Tanahashi, N. Ohno, J. Lumin. 129, 1759–1761 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • R. Sreeja Sreedharan
    • 1
  • V. S. Kavitha
    • 1
  • S. Suresh
    • 1
  • R. Reshmi Krishnan
    • 1
  • R. Jolly Bose
    • 1
  • V. P. Mahadevan Pillai
    • 1
  1. 1.Department of OptoelectronicsUniversity of KeralaThiruvananthapuramIndia

Personalised recommendations