Advertisement

Applied Physics A

, 124:686 | Cite as

Effects of single-pulse Al2O3 insertion in TiO2 oxide memristors by low temperature ALD

  • C. Giovinazzo
  • C. Ricciardi
  • C. F. Pirri
  • A. Chiolerio
  • S. Porro
Article
  • 27 Downloads

Abstract

Al2O3/TiO2 multilayer structures were fabricated by atomic layer deposition (ALD) to examine the effect of Al2O3 on the resistive switching behavior of TiO2 thin films. The doping process via ALD consisted in the fabrication of a multilayer structure, in which Al2O3 single layers were periodically inserted into TiO2 films during ALD. The presence of Al atoms induced localized structural and chemical variations that allowed tuning the electrical response of TiO2 devices. Multilayer and doped samples were deposited at low temperature (100 °C), using TiCl4 and TMA as metal precursor and H2O as oxidation source. The memristive behavior of Pt/TiOx:AlOy/Pt symmetric devices was tested in voltage sweep mode, showing a bipolar switching with stable high and low resistance states. The variation of doping concentration of Al2O3 in the TiO2 film obtained by ALD allowed to tune switching voltages, resistance values and ROFF/RON ratio. The fine control of these variables adds a degree of freedom in the control of MIM memristors, exploiting the combination of different binary oxides and producing devices with highly defined and tunable electrical properties.

Notes

Acknowledgements

The support by M. Raimondo in helping with FESEM measurements, S. Guastella with the XPS characterization and D. Perrone with sputtering deposition and fabrication of devices is gratefully acknowledged. This work was partially supported by “Politecnico di Torino” and “Compagnia di San Paolo” through the initiative “Neural Egineering and Computation (NEC)”.

References

  1. 1.
    S.M. George, Chem. Rev. 110, 111 (2010)CrossRefGoogle Scholar
  2. 2.
    M. Leskelä, M. Ritala, Thin Solid Films 409, 138 (2002)ADSCrossRefGoogle Scholar
  3. 3.
    P. Knauth, H.L. Tuller, J. Appl. Phys. 85, 897 (1999)ADSCrossRefGoogle Scholar
  4. 4.
    J.J. Yang, N.P. Kobayashi, J.P. Strachan, M.X. Zhang, D.A.A. Ohlberg, M.D. Pickett, Z. Li, G. Medeiros-Ribeiro, R.S. Williams, Chem. Mater. 23, 123 (2011)CrossRefGoogle Scholar
  5. 5.
    A.B.F. Martinson, J.W. Elam, J.T. Hupp, M.J. Pellin, Nano Lett. 7, 2183 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    P.F. Siles, M. de Pauli, C.C. Bof Bufon, S.O. Ferreira, J. Bettini, O.G. Schmidt, A. Malachias, Nanotechnology 24, 35702 (2013)CrossRefGoogle Scholar
  7. 7.
    L. Chua, IEEE Trans. Circuit Theory 18, 507 (1971)CrossRefGoogle Scholar
  8. 8.
    D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, Nature 453, 80 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    J.J. Yang, B.J. Choi, M.-X. Zhang, A.C. Torrezan, J.P. Strachan, R.S. Williams, ECS Trans. 58, 9 (2013)CrossRefGoogle Scholar
  10. 10.
    A.S. Oblea, A. Timilsina, D. Moore, K.A. Campbell, Proc. Int. Jt. Conf. Neural Netw. 3, 4 (2010)Google Scholar
  11. 11.
    T. Berzina, S. Erokhina, P. Camorani, O. Konovalov, V. Erokhin, M.P. Fontana, ACS Appl. Mater. Interfaces 1, 2115 (2009)CrossRefGoogle Scholar
  12. 12.
    A. Chiolerio, I. Roppolo, D. Perrone, A. Sacco, K. Rajan, A. Chiappone, S. Bocchini, K. Bejtka, C. Ricciardi, C.F. Pirri, Appl. Surf. Sci. 424, 352–358 (2017)ADSCrossRefGoogle Scholar
  13. 13.
    S. Porro, C. Ricciardi, RSC Adv. 5, 68565 (2015)CrossRefGoogle Scholar
  14. 14.
    S. Porro, E. Accornero, C.F. Pirri, C. Ricciardi, Carbon. 85, 383 (2015)CrossRefGoogle Scholar
  15. 15.
    Y.Y. Chen, S. Member, L. Goux, S. Clima, B. Govoreanu, S. Member, R. Degraeve, G.S. Kar, A. Fantini, G. Groeseneken, D.J. Wouters, M. Jurczak, IEEE Electron Dev. Lett. 60, 1114 (2013)CrossRefGoogle Scholar
  16. 16.
    Y. Yang, S. Choi, W. Lu, Nano Lett. 13, 2908 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    S. Samanta, S. Maikap, A. Roy, S. Jana, J.T. Qiu, Adv. Mater. Interfaces 4, 1700959 (2017)CrossRefGoogle Scholar
  18. 18.
    S. Chakrabarti, S. Maikap, S. Samanta, S. Jana, A. Roy, J.T. Qiu, Phys. Chem. Chem. Phys. 19, 25938 (2017)CrossRefGoogle Scholar
  19. 19.
    M. Laurenti, S. Porro, C.F. Pirri, C. Ricciardi, A. Chiolerio, Crit. Rev. Solid State Mater. Sci. 42, 153 (2017)ADSCrossRefGoogle Scholar
  20. 20.
    D. Conti, A. Lamberti, S. Porro, P. Rivolo, A. Chiolerio, C.F. Pirri, C. Ricciardi, Nanotechnology 27, 485208 (2016)CrossRefGoogle Scholar
  21. 21.
    L. Qingjiang, A. Khiat, I. Salaoru, C. Papavassiliou, X. Hui, T. Prodromakis, Sci. Rep. 4, 4522 (2015)CrossRefGoogle Scholar
  22. 22.
    A. Sawa, Mater. Today 11, 28 (2008)CrossRefGoogle Scholar
  23. 23.
    H. Akinaga, H. Shima, Proc. IEEE 98, 2237 (2010)CrossRefGoogle Scholar
  24. 24.
    C. Zamarreño-Ramos, L.A. Camuñas-Mesa, J.A. Perez-Carrasco, T. Masquelier, T. Serrano-Gotarredona, B. Linares-Barranco, Front. Neurosci. 5, 1 (2011)CrossRefGoogle Scholar
  25. 25.
    S.H. Jo, T. Chang, I. Ebong, B.B. Bhadviya, P. Mazumder, W. Lu, Nano Lett. 10, 1297 (2010)ADSCrossRefGoogle Scholar
  26. 26.
    D.-H. Kwon, K.M. Kim, J.H. Jang, J.M. Jeon, M.H. Lee, G.H. Kim, X.-S. Li, G.-S. Park, B. Lee, S. Han, M. Kim, C.S. Hwang, Nat. Nanotechnol. 5, 148 (2010)ADSCrossRefGoogle Scholar
  27. 27.
    V. Miikkulainen, M. Leskelä, M. Ritala, R.L. Puurunen, J. Appl. Phys. 113, 2 (2013)CrossRefGoogle Scholar
  28. 28.
    S. Porro, A. Jasmin, K. Bejtka, D. Conti, D. Perrone, S. Guastella, C.F. Pirri, A. Chiolerio, C. Ricciardi, J. Vac. Sci. Technol. A Vac. Surf. Film. 34, 01A147 (2016)CrossRefGoogle Scholar
  29. 29.
    M.D. Groner, F.H. Fabreguette, J.W. Elam, S.M. George, Chem. Mater. 16, 639 (2004)CrossRefGoogle Scholar
  30. 30.
    M. Sánchez-Agudo, L. Soriano, C. Quirós, Surf. Sci. 485, 470 (2001)ADSCrossRefGoogle Scholar
  31. 31.
    M.a. Omari, R.S. Sorbello, C.R. Aita, J. Vac. Sci. Technol. A Vac. Surf. Film. 24, 317 (2006)CrossRefGoogle Scholar
  32. 32.
    S. Kim, G. Choi, J. Kim, C. Hwang, Chem. Mater. 3723 (2008)Google Scholar
  33. 33.
    R.L. Puurunen, Chem. Vap. Depos. 9, 327 (2003)CrossRefGoogle Scholar
  34. 34.
    R.L. Puurunen, J. Appl. Phys. 97, (2005)Google Scholar
  35. 35.
    K. Szot, W. Speier, G. Bihlmayer, R. Waser, Nat. Mater. 5, 312 (2006)ADSCrossRefGoogle Scholar
  36. 36.
    R. Waser, Nanoelectronics and Information Technology (Wiley, Hoboken, 2012)Google Scholar
  37. 37.
    E.W. Lim, R. Ismail, Electronics 4, 586 (2015)CrossRefGoogle Scholar
  38. 38.
    S. Kim, S.H. Choi, W. Lu, ACS Nano 8, 2369 (2014)CrossRefGoogle Scholar
  39. 39.
    R. Degraeve, G. Groeseneken, R. Bellens, J.L. Ogier, M. Depas, P.J. Roussel, H.E. Maes, IEEE Trans. Electron Dev. 45, 904 (1998)ADSCrossRefGoogle Scholar
  40. 40.
    G. Lee, B.K. Lai, C. Phatak, R.S. Katiyar, O. Auciello, J. Appl. Phys. 114, 3 (2013)Google Scholar
  41. 41.
    Y. Lin, D. Huang, J. Lou, T. Tseng, Thin Solid Films 644, 10 (2017)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • C. Giovinazzo
    • 1
  • C. Ricciardi
    • 1
  • C. F. Pirri
    • 1
  • A. Chiolerio
    • 2
  • S. Porro
    • 1
  1. 1.Department of Applied Science and TechnologyPolitecnico di TorinoTorinoItaly
  2. 2.Center for Sustainable Future Technologies, Istituto Italiano di TecnologiaTorinoItaly

Personalised recommendations