Advertisement

Applied Physics A

, 124:683 | Cite as

Synthesis of Au nanoparticles–decorated CdS nanowires via laser ablation in liquid for optoelectronic applications

  • Raid A. Ismail
  • Walid K. Hamoudi
  • Hadeel F. Abbas
Article
  • 7 Downloads

Abstract

Au nanoparticlesdecorated CdS nanowires have been synthesized by laser ablation in liquid under the effect of intense light pulses (IPL). An Nd:YAG laser with 3 J/cm²/pulse energy fluence of 7 ns pulses was combined with (2 J/cm²/pulse) energy fluence of 3 ms intense light pulses and used to ablate Au target in colloidal CdS nanowires. The effect of IPL irradiation on structural, morphological and optical properties of Au NPs–decorated CdS NWs was investigated. Results of optical properties showed an increased optical energy gap from 2.5 to 2.61 eV after combining IPL source with laser ablation pulses. The photoluminescence emission peak of Au NPsdecorated CdS NWs was blue shifted from 473 to 462 nm with a significant rise in the PL intensity, after using the IPL. The synthesized Au NPs–CdS NW hybrids exhibited high surface-enhanced Raman scattering SERS after being irradiated with IPL. The IPL-assisted laser ablation improved structural characteristics by increasing the photocurrent, reducing structural defects, minimizing the e–h recombination at the junction interface and enhancing the figures of merit of the Au–decorated CdS/Si photodetector.

References

  1. 1.
    V. Chumachenko, A. Naumenko, O. Yeshchenko, N. Kutsevol, I. Bondarchuk, J. Nanomater. 2016, 1 (2016)CrossRefGoogle Scholar
  2. 2.
    W. Chen, T. Yang, Y. Hsu, Chem. Mater. 20, 7204 (2008)CrossRefGoogle Scholar
  3. 3.
    K. Easawi, M. Nabil, T. Abdallah, S. Negm, H. Talaat, Int. J. Mater. Metall. Eng. 6, 63 (2012)Google Scholar
  4. 4.
    E. Khon, A. Mereshchenko, A. Arnovsky, K. Acharya, A. Klinkova, N. Kasakarage, I. Nemitz, M. Zamkov, Nano Lett. 11, 1792 (2011)ADSCrossRefGoogle Scholar
  5. 5.
    G. Bajaj, R. Soni, Appl. Surf. Sci. 256, 6399 (2010)ADSCrossRefGoogle Scholar
  6. 6.
    R. Singh, B. Pal, Part. Sci. Technol. Int. J. 33, 53 (2015)CrossRefGoogle Scholar
  7. 7.
    Z. Yu, Y. Xie, G. Liu, G. Lu, X. Ma, H. Cheng, J. Mater. Chem. A 1, 2773 (2013)CrossRefGoogle Scholar
  8. 8.
    S. Han, L. Hu, N. Gao, A. Ghamdi, X. Fang, Adv. Funct. Mater. 24, 3725 (2014)CrossRefGoogle Scholar
  9. 9.
    S. Liu, Y. Xu, Nanoscale 5, 9330 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    W. Zhang, J. Zheng, C. Tan, X. Lin, S. Hu, J. Chen, X. You. S. Li, J. Mater. Chem. B 3, 217 (2015)CrossRefGoogle Scholar
  11. 11.
    J. Seely, B. Kjornrattanawanich, E. Holland, R. Korde, Opt. Lett. 30, 3120 (2005)ADSCrossRefGoogle Scholar
  12. 12.
    R. Ismail, K. Khashan, R. Mahdi, Mater. Sci. Semicond. Process. 68, 252 (2017)CrossRefGoogle Scholar
  13. 13.
    R. Ismail, W. Hamoudi, H. Abbas, Mater. Res. Express 5, 25017 (2018)CrossRefGoogle Scholar
  14. 14.
    X. Phuoc, M. Chyu, J. Mater. Sci. Nanotechnol. 1, 1 (2013)Google Scholar
  15. 15.
    G. Manna, R. Bose, N. Pradhan, Angew. Chem. Int. Ed. 53, 1 (2014)CrossRefGoogle Scholar
  16. 16.
    D. Mongin, E. Shaviv, P. Maioli, A. Crut, U. Banin, N. Fatti, F. Vallee, ACS Nano 6, 7034 (2012)CrossRefGoogle Scholar
  17. 17.
    X. Wang, Y. Ying, P. Hu, J. Lei, X. Peng, Appl. Phys. A 120, 1291 (2015)ADSCrossRefGoogle Scholar
  18. 18.
    L. Xiao-Li, L. Shan, L. Min, Y. Xue, Z. Li, W. Quan, Chin. Phys. Lett. 31, 064203 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    R. Ismail, B. Rasheed, E. Salm, M. Al-Hadethy, J. Mater. Sci. Mater. Electron. 18, 397 (2007)CrossRefGoogle Scholar
  20. 20.
    N. Ramamurthy, R. Kumar, G. Murugadoss, Nanosci. Nanotechnol. Int J. 3, 12 (2011)Google Scholar
  21. 21.
    E. Esakkiraj, S. Abdul Kadhar, J. Henry, K. Mohanraj, S. Kannan, S. Barathan, G. Sivakumar, Optik 124, 5229 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    R. Venugopal, P. Lin, C. Liu, Y. Chen, J. Am. Chem. Soc. 127, 11262 (2005)CrossRefGoogle Scholar
  23. 23.
    J. Suh, J. Lee, Chem. Phys. Lett. 281, 384 (1997)ADSCrossRefGoogle Scholar
  24. 24.
    A. Pimentel, A. Araújo, J. Coelho, D. Nunes, J. Oliveira, J. Mendes, H. Águas, R. Martins, E. Fortunato, Materials 10, 1351 (2017)ADSCrossRefGoogle Scholar
  25. 25.
    R. Ismail, E. Salim, W. Hamoudi, Mater. Sci. Eng. C 33, 47 (2013)CrossRefGoogle Scholar
  26. 26.
    V. Nevruzoglu, M. Tomakin, E. Keskenler, G. Ozturk, J. Ceram. Process. Res. 18, 494 (2017)Google Scholar
  27. 27.
    Y. Jiang, C. Li, W. Cao, Y. Jiang, S. Shang, C. Xia, Phys. Chem. Chem. Phys. 17, 16784 (2015)CrossRefGoogle Scholar
  28. 28.
    J. Hwang, M. Lai, H. Chen, M. Kao, IEEE Photonics Technol. Lett. 15, 1023 (2014)ADSCrossRefGoogle Scholar
  29. 29.
    I. Zarazúaa, D. Esparzaa, T. López-Lukea, A. Ceja-Fdeza, J. Reyes-Gomezb, I. Mora-Seróc, E. de la Rosaa, Electrochim. Acta 188, 710 (2016)Google Scholar
  30. 30.
    S. Manna, S. Das, S. Mondal, R. Singha, S. Ray, J. Phys. Chem. C 116, 7126 (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Raid A. Ismail
    • 1
  • Walid K. Hamoudi
    • 1
  • Hadeel F. Abbas
    • 1
  1. 1.Department of Applied ScienceUniversity of TechnologyBaghdadIraq

Personalised recommendations