Advertisement

Applied Physics A

, 124:687 | Cite as

Investigations of morphological and crystallographic properties of thermally and deformation-induced martensitic phase transformations in the Fe-31.5Ni-10Mn alloy

  • Yasin Göktürk Yıldız
  • Gökçen Dikici Yıldız
  • Hamza Yaşar Ocak
Article
  • 95 Downloads

Abstract

Martensitic transformations are diffusionless shear transformations. The transformation is usually driven by mechanical deformation or by a change in temperature. This study investigated morphological and crystallographic properties of thermally and deformation-induced austenite–martensite phase transformations in the Fe-31.5Ni-10Mn (wt%) alloy. Microstructural characterization was carried out by using a transmission electron microscope (TEM). It was seen that austenite–martensite phase transformation was \(\gamma \to \alpha ^{\prime}\) (fcc→bcc) and the morphology of martensite was lath type. It was also determined that the habit plane of martensite was \({\left( {2~5~9} \right)_\alpha }\) and the orientation relationship between the main and product crystal structures was Kurdjumov–Sachs type. The dilatation parameter of martensite was calculated to be \(\delta ^{\prime} \cong 0.91\). Accordingly, it was found that martensitic phase transformations in the Fe-31.5Ni-10Mn alloy had the isothermal kinetics. Moreover, it was revealed that thermally and deformation-induced martensitic transformations had similar characteristics in terms of morphological and crystallographic aspects.

References

  1. 1.
    S. Banerjee, P. Mukhopadhyay, Phase Transformations, 1st edn. (Pergamon Mater. Series, Great Britain, 2007), pp. 259–376Google Scholar
  2. 2.
    T.N. Durlu, Scripta Metall. 13, 519 (1979)CrossRefGoogle Scholar
  3. 3.
    Z. Nishiyama, Martensitic Transformation, 1st edn. (Academic Press. Inc., London, 1978), pp. 14–16Google Scholar
  4. 4.
    C. Tan, Z. Feng, K. Zhang, M. Wu, X. Tian, E. Guo, Trans. Nonferrous Met. Soc. China 27, 2234 (2017)CrossRefGoogle Scholar
  5. 5.
    T. Kakeshita, K. Kuroiwa, K. Shimizu, T. Ikeda, A. Yamagishi, M. Date, Mater. Trans. 34, 423 (1993)CrossRefGoogle Scholar
  6. 6.
    G.B. Olson, M. Cohen, Metall. Trans. A 7, 1915 (1976)CrossRefGoogle Scholar
  7. 7.
    R.F. Bunshah, R.F. Mehl, Trans. AIME 193, 1251 (1953)Google Scholar
  8. 8.
    K. Sipos, L. Remy, A. Pineau, Metall. Trans. A 7, 857 (1976)CrossRefGoogle Scholar
  9. 9.
    K.E. Easterling, A.R. Thölen, Acta Metall. 28, 1229 (1980)CrossRefGoogle Scholar
  10. 10.
    S. Kajiwara, Philos. Mag. A. 43, 1483 (1981)ADSCrossRefGoogle Scholar
  11. 11.
    S. Cotes, M. Sade, A.F. Guillermet, Metall. Mater. Trans. A 26, 1957 (1995)CrossRefGoogle Scholar
  12. 12.
    K. Wakasa, C.M. Wayman, Metallography 14, 37 (1981)CrossRefGoogle Scholar
  13. 13.
    H. Ma, J. Yang, F. Lu, F. Qin, W. Xiao, X. Zhao, Progress Nat. Sci. Mater. Int. 28, 74 (2018)CrossRefGoogle Scholar
  14. 14.
    H.R. Koohdar, M. Nili-Ahmadabadi, M. Habibi-Parsa, H.R. Jafarian, H. Ghasemi-Nanesa, H. Shirazi, Mater. Sci. Eng. A 658, 86 (2016)CrossRefGoogle Scholar
  15. 15.
    J. Wu, J.M. Howe, W.Z. Zhang, Acta Mater. 59, 3297 (2011)CrossRefGoogle Scholar
  16. 16.
    H. Pal, A. Chanda, M. De, J. Alloy. Compd. 278, 209 (1998)CrossRefGoogle Scholar
  17. 17.
    L.Y. Pustov, V.V. Tcherdyntsev, Sh.M. Abdulhalikov, S.D. Kaloshkin, E.V. Shelekhov, E.I. Estrin, Y.V. Baldokhin, J. Alloy. Compd. 483, 200 (2009)CrossRefGoogle Scholar
  18. 18.
    D.Z. Yang, B.P.J. Sandvik, C.M. Wayman, Metall. Trans. A 15, 1555 (1984)CrossRefGoogle Scholar
  19. 19.
    S. Kajiwara, Mater. Trans. 33, 1027 (1992)CrossRefGoogle Scholar
  20. 20.
    Y. Inokuti, B. Cantor, Acta Metall. 30, 343 (1982)CrossRefGoogle Scholar
  21. 21.
    K. Sridharan, F.J. Worzala, R.A. Dodd, Mater. Chem. Phys. 30, 115 (1991)CrossRefGoogle Scholar
  22. 22.
    T.N. Durlu, J.W. Christian, Acta Metall. 27, 663 (1979)CrossRefGoogle Scholar
  23. 23.
    G. Krauss, A.R. Marder, Metall. Trans. 2, 2343 (1971)CrossRefGoogle Scholar
  24. 24.
    G. Yıldız, Y.G. Yıldız, S. Nezir, Bull. Mater. Sci. 36, 93 (2013)CrossRefGoogle Scholar
  25. 25.
    Y.G. Yildiz, G.D. Yildiz, Metal Sci. Heat Treat. 59, 407 (2017)ADSCrossRefGoogle Scholar
  26. 26.
    S. Seo, D. Leem, J. Jun, C. Choi, ISIJ Int. 41, 350 (2001)CrossRefGoogle Scholar
  27. 27.
    M. Umemoto, E. Yoshitake, I. Tamura, J. Mater. Sci. 18, 2893 (1983)ADSCrossRefGoogle Scholar
  28. 28.
    P. Visvesvaran, Metall. Mater. Trans. A 27, 973 (1996)CrossRefGoogle Scholar
  29. 29.
    X. Zhang, G. Miyamoto, T. Kaneshita, Y. Yoshida, Y. Toji, T. Furuhara, Acta Mater. 154, 1 (2018)CrossRefGoogle Scholar
  30. 30.
    K. Wakasa, C.M. Wayman, Acta Metall. 29, 973 (1981)CrossRefGoogle Scholar
  31. 31.
    K. Wakasa, C.M. Wayman, Acta Metall. 29, 1013 (1981)CrossRefGoogle Scholar
  32. 32.
    G. Ghosh, V. Raghavan, Scripta Metall. 20, 849 (1986)CrossRefGoogle Scholar
  33. 33.
    T.N. Durlu, J. Mater. Sci. 36, 5665 (2001)ADSCrossRefGoogle Scholar
  34. 34.
    O. Heczko, H. Seiner, P. Stoklasova, P. Sedlak, J. Sermeus, C. Glorieux, A. Backen, S. Fahler, M. Landa, Acta Mater. 145, 298 (2018)CrossRefGoogle Scholar
  35. 35.
    C. Song, H. Yua, J. Lua, T. Zhoua, S. Yang, Mater. Sci. Eng. A 726, 1 (2018)CrossRefGoogle Scholar
  36. 36.
    H. Shirazi, G. Miyamoto, S. Hossein Nedjad, H. Ghasemi-Nanesa, M. Nili, T. Ahmadabadi, Furuhara, J. Alloy. Compd. 577, S572 (2013)CrossRefGoogle Scholar
  37. 37.
    L. Kong, Y. Liu, Y. Song, J. Liu, S. Li, Y. Liang, Y. Zheng, W. Cui, Mechanika. 23(2), 291 (2017)CrossRefGoogle Scholar
  38. 38.
    B. Li, L. Zhang, C. Li, Q. Li, J. Chen, G. Shu, Y. Weng, B. Xu, S. Hu, W. Liu, J. Nucl. Mater. 507, 59 (2018)ADSCrossRefGoogle Scholar
  39. 39.
    S. Takaki, H. Nakatsu, Y. Torunaga, Mater. Trans. JIM 34, 489 (1993)CrossRefGoogle Scholar
  40. 40.
    W.J. Dan, S.H. Li, W.G. Zhang, Z.Q. Lin, Mater. Design 29, 604 (2008)CrossRefGoogle Scholar
  41. 41.
    B. Han, Z. Xu, Mater. Sci. Eng. A 431, 109 (2006)CrossRefGoogle Scholar
  42. 42.
    T. Kakeshita, K. Kuroiwa, K. Shimizu, T. Ikeda, A. Yamagishi, M. Date, Mater. Trans. 34, 415 (1993)CrossRefGoogle Scholar
  43. 43.
    J. Singh, C.M. Wayman, Mater. Sci. Eng. 93, 227 (1987)CrossRefGoogle Scholar
  44. 44.
    H. Ghasemi-Nanesa, M. Nili-Ahmadabadi, A Mirsepasi and Cyrus Zamani. Met. Mater. Int. 20, 201 (2014)CrossRefGoogle Scholar
  45. 45.
    J.W. Edington, Practical Electron Microscopy in Materials Science, 1st edn. (The Macmillan Press Ltd., London, 1976), pp. 304–325Google Scholar
  46. 46.
    B. Fultz, J.M. Howe, Transmission Electron Microscopy and Diffractometry of Materials, 4th edn. (Springer Sci. and Business Med., New York, 2012), pp. 689–702Google Scholar
  47. 47.
    J.S. Bowles, J.K. Mackenzie, Acta Metall. 2, 224 (1954)CrossRefGoogle Scholar
  48. 48.
    A. Borgenstam, M. Hillert, Acta Mater. 45, 651 (1997)CrossRefGoogle Scholar
  49. 49.
    D.Z. Yang, C.M. Wayman, Acta Metall. 32, 949 (1984)CrossRefGoogle Scholar
  50. 50.
    K. Wakasa, C.M. Wayman, Metallography 14, 49 (1981)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yasin Göktürk Yıldız
    • 1
  • Gökçen Dikici Yıldız
    • 2
  • Hamza Yaşar Ocak
    • 3
  1. 1.Department of Electronics and AutomationKırıkkale UniversityKırıkkaleTurkey
  2. 2.Department of Physics, Faculty of Arts and SciencesKırıkkale UniversityKırıkkaleTurkey
  3. 3.Department of Physics, Faculty of Arts and SciencesDumlupınar UniversityKütahyaTurkey

Personalised recommendations