Advertisement

Applied Physics A

, 124:685 | Cite as

Forming and defect analysis for single track scanning in selective laser melting of Ti6Al4V

  • Yu Xiang
  • Shuzhe Zhang
  • Zhengying Wei
  • Junfeng Li
  • Pei Wei
  • Zhen Chen
  • Lixiang Yang
  • Lihao Jiang
Article
  • 36 Downloads

Abstract

Selective laser melting (SLM) is one of the most promising additive manufacturing (AM) processes. Each single track in SLM may affect the forming defects and the resultant relative density of final SLM parts. A three-dimensional randomly distributed powder bed model of Ti6Al4V was established to study the forming process of single track. The numerical model is verified by experimental tests. The numerical results show that—the typical metallurgical defects associated with SLM such as balling effect is significantly affected by line energy density (LED). The optimal LED range is given by numerical and experimental results.

Notes

Acknowledgements

The research is supported by Science Challenge Project TZ2018006-0301-01.

References

  1. 1.
    B. Berman, 3-D printing: the new industrial revolution. Bus. Horizons. 55, 155–162 (2012)CrossRefGoogle Scholar
  2. 2.
    J.P. Kruth, L. Froyen, J.V. Vaerenbergh et al., Selective laser melting of iron-based powder. J. Mater. Process. Technol. 149(1), 616–622 (2004)CrossRefGoogle Scholar
  3. 3.
    D.D. Gu, W. Meiners, K. Wissenbach et al., Laser additive manufacturing of metallic components: materials, processes and mechanisms. Int. Mater. Rev. 57(3), 133–164 (2012)CrossRefGoogle Scholar
  4. 4.
    F. Calignano, D. Manfredi, E.P. Ambrosio et al., Direct fabrication of joints based on direct metal laser sintering in aluminum and titanium alloys. Proc. CIRP. 21, 129–132 (2014)CrossRefGoogle Scholar
  5. 5.
    S. Das, Physical aspects of process control in selective laser sintering of metals. Adv. Eng. Mater. 5(10), 701–711 (2003)CrossRefGoogle Scholar
  6. 6.
    P. Yuan, D.D. Gu, D.H. Dai, Particulate migration behavior and its mechanism during selective laser melting of TiC reinforced Al matrix nanocomposites. Mater. Des. 82(5), 46–55 (2015)CrossRefGoogle Scholar
  7. 7.
    A. Simchi, Direct laser sintering of metal powders: mechanism, kinetics and microstructural features. Mater. Sci. Eng. A. 428(1–2), 148–158 (2006)CrossRefGoogle Scholar
  8. 8.
    A. Yadroitsev, I. Gusarov, Yadroitsava et al., Single track formation in selective laser melting of metal powders. J. Mater. Process. Technol. 210(12), 1624–1631 (2010)CrossRefGoogle Scholar
  9. 9.
    Y.J. Shi, H. Shen, Z.Q. Yao et al., An analytical model based on the similarity in temperature distributions in laser forming. Opt. Lasers Eng. 45(1), 83–87 (2007)CrossRefGoogle Scholar
  10. 10.
    Z. Chen, Y. Xiang, Z.Y. Wei et al., Thermal dynamic behavior during selective laser melting of K418 superalloy: numerical simulation and experimental verification. Appl. Phys. A. 124(4), 313 (2018)ADSCrossRefGoogle Scholar
  11. 11.
    K. Zeng, D. Pal, A review of thermal analysis methods in laser sintering and selective laser melting, in: Proceedings of Solid Freeform Fabrication Symposium. 23, 796–814 (2012)Google Scholar
  12. 12.
    P. Wei, Z.Y. Wei, Z. Chen et al., The AlSi10Mg samples produced by selective laser melting: single track, densification, microstructure and mechanical behavior. Appl. Surf. Sci. 408(30), 38–50 (2017)ADSCrossRefGoogle Scholar
  13. 13.
    C. Meier, R.W. Penny, Z. Yu et al., Thermophysical phenomena in metal additive manufacturing by selective laser melting: fundamentals, modeling. simulation and experimentation (2017). https://arxiv.org/abs/1709.09510
  14. 14.
    W.J. Sames, F.A. List, S. Pannala et al., The metallurgy and pro-cessing science of metal additive manufacturing. Int. Mater. Rev. 6608, 1–46 (2016)Google Scholar
  15. 15.
    W.E. King, A.T. Anderson, R.M. Ferencz et al., Laser powder bed fusion additive manufacturing of metals; physics, computational, and materials challenges. Appl. Phys. Rev. 2(4), 44–6210 (2015)CrossRefGoogle Scholar
  16. 16.
    C. Körner, E. Attar, P. Heinl, Mesoscopic simulation of selective beam melting processes. J. Mater. Process. Technol. 211(6), 978–987 (2011)CrossRefGoogle Scholar
  17. 17.
    G.B.M. Cervera, G. Lombera, Numerical prediction of temperature and density distributions in selective laser sintering processes. Rapid. Prototyping. J. 5(1), 12–26 (1999)CrossRefGoogle Scholar
  18. 18.
    S. Kolossov, E. Boillat, R. Glardon et al., 3D FE simulation for temperature evolution in the selective laser sintering process. Int. J. Mach. Tools Manuf. 44(2), 117–123 (2004)CrossRefGoogle Scholar
  19. 19.
    A. Hussein, L. Hao, C. Yan et al., Finite element simulation of the temperature and stress fields in single layers built without-support in selective laser melting. Mater. Des. 52(24), 638–647 (2013)CrossRefGoogle Scholar
  20. 20.
    A. Almangour, D. Grzesiak, J. Cheng et al., Thermal behavior of the molten pool, microstructural evolution, and tribological performance during selective laser melting of TiC/316L stainless steel nanocomposites: Experimental and simulation methods. J. Mater. Process. Technol. 257, 288–301 (2018)CrossRefGoogle Scholar
  21. 21.
    Y. Li, D. Gu, Parametric analysis of thermal behavior during selective laser melting additive manufacturing of aluminum alloy powder. Mater. Des. 63(2), 856–867 (2014)CrossRefGoogle Scholar
  22. 22.
    Y. Li, D. Gu, Thermal behavior during selective laser melting of commercially pure titanium powder: Numerical simulation and experimental study. Addit. Manuf. 1(4), 99–109 (2014)CrossRefGoogle Scholar
  23. 23.
    Q. Shi, D. Gu, M. Xia et al., Effects of laser processing parameters on thermal behavior and melting/solidification mechanism during selective laser melting of TiC/Inconel 718 composites. Opt. Laser Technol. 84, 9–22 (2016)ADSCrossRefGoogle Scholar
  24. 24.
    D. Dai, D. Gu, Thermal behavior and densification mechanism during selective laser melting of copper matrix composites: simulation and experiments. Mater. Des. 55(6), 482–491 (2014)CrossRefGoogle Scholar
  25. 25.
    M.J. Xia, D.D. Gu, G.Q. Yu et al., Selective laser melting 3D printing of Ni-based superalloy: understanding thermodynamic mechanisms. Chin. Sci. Bull. 61(13), 1013–1022 (2016)Google Scholar
  26. 26.
    S.A. Khairallah, A.T. Anderson, A. Rubenchik et al., Laser powder-bed fusion additive manufacturing: physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones. Acta Mater. 108, 36–45 (2016)CrossRefGoogle Scholar
  27. 27.
    C. Chiumenti, E. Neiva, E. Salsi et al., Numerical modelling and experimental validation in selective laser melting. Addit Manuf. 18, 171–185 (2017)CrossRefGoogle Scholar
  28. 28.
    B. Song, S. Dong, H. Liao et al., Process parameter selection for selective laser melting of Ti6Al4V based on temperature distribution simulation and experimental sintering. Int. J. Adv. Manuf. Technol. 61, 967–974 (2012)CrossRefGoogle Scholar
  29. 29.
    J.N. Roux, Geometric origin of mechanical properties of granular materials. Phys. Rev. E 61(6), 6802 (2000)ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    G. Rong, G. Liu, D. Hou, C. Zhou, Effect of particle shape on mechanical behaviors of rocks: a numerical study using clumped particle model, Sci. World J. 2013(7), 289215–589215 (2013)Google Scholar
  31. 31.
    P. Wei, Z. Wei, Z. Chen et al., Thermal behavior in single track during selective laser melting of AlSi10Mg powder. Appl. Phys. A. 123(9), 604 (2017)ADSCrossRefGoogle Scholar
  32. 32.
    P. Wei, Z. Wei, Z. Chen et al., Numerical simulation and parametric analysis of selective laser melting process of AlSi10Mg powder. Appl. Phys. A. 123(8), 540 (2017)ADSCrossRefGoogle Scholar
  33. 33.
    Y. Lee, W. Zhang, Modeling of heat transfer, fluid flow and solidification microstructure of nickel-base superalloy fabricated by laser powder bed fusion. Addit. Manuf. 12, 178–188 (2016)CrossRefGoogle Scholar
  34. 34.
    A. Masmoudi, C. Bolot, Coddet, Investigation of the laser–powder–atmosphere interaction zone during the selective laser melting process. J. Mater. Process. Technol. 225, 122–132 (2015)CrossRefGoogle Scholar
  35. 35.
    C.W. Hirt, B.D. Nichols, Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39(1), 201–225 (1981)ADSCrossRefGoogle Scholar
  36. 36.
    D. Dai, D. Gu, Influence of thermodynamics within molten pool on migration and distribution state of reinforcement during selective laser melting of AlN/AlSi10Mg composites. Int. J. Mach. Tools Manuf. 100, 14–24 (2016)CrossRefGoogle Scholar
  37. 37.
    S. Rubenchik, S. Wu, I. Mitchell, M. Golosker, N. Leblanc, Peterson, Direct measurements of temperature-dependent laser absorptivity of metal powders. Appl. Opt. 54(24), 7230 (2015)ADSCrossRefGoogle Scholar
  38. 38.
    K.C. Mills, Recommended values of thermos physical properties for selected commercial alloys. Woodhead Publishing. 205–210 (2002)Google Scholar
  39. 39.
    K. Dai, L. Shaw, Finite element analysis of the effect of volume shrinkage during laser densification. Acta Mater. 53(18), 4743–4754 (2005)CrossRefGoogle Scholar
  40. 40.
    V. Semak, A. Matsunawa, The role of recoil pressure in energy balance during laser materials processing. J. Phys. D: Appl. Phys. 30(18), 2541 (1999)ADSCrossRefGoogle Scholar
  41. 41.
    V.R. Voller, C. Prakash, A fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problems. Int. J. Heat Mass Transf. 30(8), 1709–1719 (1987)CrossRefGoogle Scholar
  42. 42.
    H.C. Min, C.L. Yong, D. Farson, Simulation of weld pool dynamics in the stationary pulsed gas metal arc welding process and inal weld shape. Weld. J. 85(12), 271–283 (2006)Google Scholar
  43. 43.
    B. Masmoudi, R. Bolot, C. Coddet, Investigation of the laser–powder–atmosphere interaction zone during the selective laser melting process. J. Mater. Process. Technol. 225, 122–132 (2015)CrossRefGoogle Scholar
  44. 44.
    A.V. Gusarov, I. Smurov, Modeling the interaction of laser radiation with powder bed at selective laser melting. Physics Procedia. 5, 381–394 (2010)ADSCrossRefGoogle Scholar
  45. 45.
    E. Attar, C. Körner, Lattice Boltzmann model for thermal free surface lows with liquid–solid phase transition. Int. J. Heat Fluid Flow 32(1), 156–163 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yu Xiang
    • 1
  • Shuzhe Zhang
    • 1
  • Zhengying Wei
    • 1
  • Junfeng Li
    • 1
  • Pei Wei
    • 1
  • Zhen Chen
    • 1
  • Lixiang Yang
    • 1
  • Lihao Jiang
    • 1
  1. 1.State Key Laboratory of Manufacturing System EngineeringXi’an Jiaotong UniversityXi’anChina

Personalised recommendations