Advertisement

Applied Physics A

, 124:600 | Cite as

Dynamic mechanical and optical characterization of PVC/fGO polymer nanocomposites

  • T. A. Taha
  • Ahmed Saleh
Article
  • 27 Downloads

Abstract

This research demonstrates the effect of functionalized graphene oxide (fGO) by γ-aminopropyltriethoxysilane (APTES) on the structural, dynamic mechanical, and optical properties of polyvinyl chloride (PVC) polymer films. XRD analysis is applied to the prepared samples and the formation of GO is confirmed. Raman scattering measurements for GO and fGO samples confirmed the existence of the D band and G band at 1337 and 1598 cm−1. In addition, the ID/IG ratio increased for the PVC/fGO nanocomposite films, indicating that the relative fraction of sp2-hybridized carbon atom was lowered, and the distorted structure of PVC/fGO nanocomposites. Dispersion of fGO in the PVC/fGO composites was also observed using SEM. DMA measurements revealed that the nanocomposite samples exhibit higher storage moduli than pure PVC as the storage modulus for pure PVC at 20 °C is 173 MPa, whereas it is 176, 334, 498, and 920 MPa for 0.1, 0.3, 0.5, and 1.0 wt% fGO loading, respectively. The glass transition of the nanocomposite films from tan (δ) peaks is for PVC 72.69 °C, whereas it is 74.45, 77.53, 81.59, and 89.59 °C for 0.1, 0.3, 0.5, and 1.0 wt% fGO loading, respectively. FTIR spectroscopy was used to identify interaction in PVC/fGO polymer composites, which the peak around 863 cm−1 of pure film shifts to a lower wavenumber ~ 833 cm−1 with the incorporation of fGO, indicating the existence of strong and intramolecular hydrogen bonding between free C–Cl of PVC and amino groups of fGO. The direct optical energy gap (Eopt) decreased from 5.21 to 5.04 eV and Urbach energy (EU) increased with increasing fGO content. The average excitation energy for electronic transitions (Eo), the dispersion energy (Ed), refractive index, dipole strength (f), optical conductivity, and both static and high-frequency dielectric constants are enhanced with increasing fGO content. Finally, the ratio of free carriers to effective mass (N/m*) increased from 3.68 × 1056 to 12.28 × 1056 m−3 kg−1 and plasma frequency (ω) increased with increasing fGO wt%.

References

  1. 1.
    T.A. Taha, Optical and thermogravimetric analysis of Pb3O4/PVC nanocomposites. J. Mater. Sci. Mater. Electron. 28(16), 12108–12114 (2017)CrossRefGoogle Scholar
  2. 2.
    T.A. Taha, Optical properties of PVC/Al2O3 nanocomposite films. Polym. Bull. (2018).  https://doi.org/10.1007/s00289-018-2417-8 Google Scholar
  3. 3.
    K. Sterky, H. Jacobsen, I. Jakubowicz, N. Yarahmadi, T. Hjertberg, Influence of processing technique on morphology and mechanical properties of PVC nanocomposites. Eur. Polym. J. 46(6), 1203–1209 (2010)CrossRefGoogle Scholar
  4. 4.
    A.A. Ebnalwaled, A. Thabet, Controlling the optical constants of PVC nanocomposite films for optoelectronic applications. Synth. Met. 220, 374–383 (2016)CrossRefGoogle Scholar
  5. 5.
    T. Chen, J. Qiu, K. Zhu, H. Ji, C. Fan, Q. Chen, Preparation and dielectric properties of a polyurethane elastomer filled with resol-derived ordered mesoporous carbon. J. Mater. Sci. Mater. Electron. 24, 2013–2018 (2013)CrossRefGoogle Scholar
  6. 6.
    N.L. An, S.L. Liu, C.Q. Fang, R.E. Yu, X. Zhou, Y.L. Cheng, Preparation and properties of beta-phase graphene oxide/PVDF composite films. J. Appl. Polym. Sci. 132, 5 (2015)CrossRefGoogle Scholar
  7. 7.
    I.A. Asimakopoulos, G.C. Psarras, L. Zoumpoulakis, Barium titanate/polyester resin nanocomposites: development, structure-properties relationship and energy storage capability. Express Polym Lett 8, 692–707 (2014)CrossRefGoogle Scholar
  8. 8.
    M. Bicen, N. Kayaman-Apohan, S. Karatas, F. Dumludag, A. Gungor, The effect of surface modification of zeolite 4A on the physical and electrical properties of copolyimide hybrid films. Microporous Mesoporous Mater. 218, 79–87 (2015)CrossRefGoogle Scholar
  9. 9.
    A. Abdolmaleki, Z. Bazyar, Preparation and characterization of poly(benzimidazole-amide)/ZnO nanocomposites using silane coupling agent. Polym. Plast. Technol. Eng. 52, 1542–1549 (2013)CrossRefGoogle Scholar
  10. 10.
    M. Ali, M.A. Choudhry, Preparation and characterization of EPDM-silica nano/micro composites for high voltage insulation applications. Mater. Sci. Pol. 33, 213–219 (2015)CrossRefGoogle Scholar
  11. 11.
    L.A. Fredin, Z. Li, M.T. Lanagan, M.A. Ratner, T.J. Marks, Sustainable high capacitance at high frequencies: metallic aluminum polypropylene nanocomposites. ACS Nano 7, 396–407 (2013)CrossRefGoogle Scholar
  12. 12.
    P. Frubing, F.P. Wang, M. Wagener, Relaxation processes and structural transitions in stretched films of poly(vinylidene fluoride) and its copolymer with hexafluoropropylene. Appl. Phys. A Mater. Sci. Process. 107, 603–611 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    Y. Fu, L.S. Liu, J.W. Zhang, Manipulating dispersion and distribution of graphene in PLA through novel interface engineering for improved conductive properties. ACS Appl. Mater. Interfaces 6, 14069–14075 (2014)CrossRefGoogle Scholar
  14. 14.
    A. Stergiou, G. Pagona, N. Tagmatarchis (2014). Donor–acceptor graphene-based hybrid materials facilitating photo-induced electron-transfer reactions. Beilstein J. Nanotechnol. 5, 1580CrossRefGoogle Scholar
  15. 15.
    G. Eda, M. Chhowalla, Chemically derived graphene oxide: towards large-area thin-film electronics and optoelectronics. Adv. Mater. 22(22), 2392–2415 (2010)CrossRefGoogle Scholar
  16. 16.
    C.H. Lu, H.H. Yang, C.L. Zhu, X. Chen, G.N. Chen, A graphene platform for sensing biomolecules. Angew. Chem. 121(26), 4879–4881 (2009)CrossRefGoogle Scholar
  17. 17.
    S. Stankovich, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets. Carbon 44(15), 3342–3347 (2006)CrossRefGoogle Scholar
  18. 18.
    S. Wang, P.K. Ang, Z. Wang, A.L.L. Tang, J.T. Thong, K.P. Loh, High mobility, printable, and solution-processed graphene electronics. Nano Lett. 10(1), 92–98 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    Y. Wang, Z. Li, J. Wang, J. Li, Y. Lin, Graphene and graphene oxide: biofunctionalization and applications in biotechnology. Trends Biotechnol. 29(5), 205–212 (2011)CrossRefGoogle Scholar
  20. 20.
    S.K. Saha, S. Bhaumik, T. Maji, T.K. Mandal, A.J. Pal, Solution-processed reduced graphene oxide in light-emitting diodes and photovoltaic devices with the same pair of active materials. RSC Adv. 4(67), 35493–35499 (2014)CrossRefGoogle Scholar
  21. 21.
    J. Chen, B. Yao, C. Li, G. Shi, An improved Hummers method for eco-friendly synthesis of graphene oxide. Carbon 64, 225–229 (2013)CrossRefGoogle Scholar
  22. 22.
    Y. Lin, J. Jin, M. Song, Preparation and characterisation of covalent polymer functionalized graphene oxide. J. Mater. Chem. 21(10), 3455–3461 (2011)CrossRefGoogle Scholar
  23. 23.
    R. Qian, J. Yu, C. Wu, X. Zhai, P. Jiang, Alumina-coated graphene sheet hybrids for electrically insulating polymer composites with high thermal conductivity. RSC Adv. 3, 17373–17379 (2013)CrossRefGoogle Scholar
  24. 24.
    I.M. Hodge, Effects of annealing and prior history on enthalpy relaxation in glassy polymers. 4. Comparison of five polymers. Macromolecules 16, 898–902 (1983)ADSCrossRefGoogle Scholar
  25. 25.
    Y. Yao, C. Xu, S. Yu, D. Zhang, S. Wang, Facile synthesis of Mn3O4-reduced graphene oxide hybrids for catalytic decomposition of aqueous organics. Ind. Eng. Chem. Res. 52, 3637–3645 (2013)CrossRefGoogle Scholar
  26. 26.
    N. Yogamalar, Rajeswari et al., Quantum confined CdS inclusion in graphene oxide for improved electrical conductivity and facile charge transfer in hetero-junction solar cell. RSC Adv. 5(22), 16856–16869 (2015)CrossRefGoogle Scholar
  27. 27.
    M. Conradi et al., Mechanical properties of high density packed silica/poly(vinyl chloride) composites. Polym. Eng. Sci. 53(7), 1448–1453 (2013)CrossRefGoogle Scholar
  28. 28.
    T.A. Taha, Z. Ismail, M.M. Elhawary, Structural, optical and thermal characterization of PVC/SnO2 nanocomposites. Appl. Phys. A 124(4), 307 (2018)ADSCrossRefGoogle Scholar
  29. 29.
    S. Vadukumpully, J. Paul, N. Mahanta, S. Valiyaveettil, Flexible conductive graphene/poly(vinyl chloride) composite thin films with high mechanical strength and thermal stability. Carbon 49(1), 198–205 (2011)CrossRefGoogle Scholar
  30. 30.
    R. Ramachandran, S. Felix, G.M. Joshi, B.P. Raghupathy, S.K. Jeong, A.N. Grace, Synthesis of graphene platelets by chemical and electrochemical route. Mater. Res. Bull. 48(10), 3834–3842 (2013)CrossRefGoogle Scholar
  31. 31.
    J. Shen, B. Yan, M. Shi, H. Ma, N. Li, M. Ye, Fast and facile preparation of reduced graphene oxide supported Pt–Co electrocatalyst for methanol oxidation. Mater. Res. Bull. 47(6), 1486–1493 (2012)CrossRefGoogle Scholar
  32. 32.
    S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, R.S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7), 1558–1565 (2007)CrossRefGoogle Scholar
  33. 33.
    S. Ramesh, M.F. Chai, Conductivity, dielectric behavior and FTIR studies of high molecular weight poly (vinylchloride)–lithium triflate polymer electrolytes. Mater. Sci. Eng. B 139(2–3), 240–245 (2007)CrossRefGoogle Scholar
  34. 34.
    S. Rajendran, M. Sivakumar, R. Subadevi, Investigations on the effect of various plasticizers in PVA–PMMA solid polymer blend electrolytes. Mater. Lett. 58(5), 641–649 (2004)CrossRefGoogle Scholar
  35. 35.
    T.A. Taha, Y.S. Rammah, Optical characterization of new borate glass doped with titanium oxide. J. Mater. Sci. Mater. Electron. 27(2), 1384–1390 (2016)CrossRefGoogle Scholar
  36. 36.
    T.A. Taha, A.S. Abouhaswa, Preparation and optical properties of borate glass doped with MnO 2. J. Mater. Sci. Mater. Electron. 29(10), 8100–8106(2018)CrossRefGoogle Scholar
  37. 37.
    A.M. Sayed, W.M. Morsi, Dielectric relaxation and optical properties of polyvinyl chloride/lead monoxide nanocomposites. Polym. Compos. 34(12), 2031–2039 (2013)CrossRefGoogle Scholar
  38. 38.
    F. Urbach, The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Phys. Rev. 92(5), 1324 (1953)‏ADSCrossRefGoogle Scholar
  39. 39.
    V. Raja, A.K. Sarma, V.N. Rao, Optical properties of pure and doped PMMA-CO-P4VPNO polymer films. Mater. Lett. 57(30), 4678–4683 (2003)CrossRefGoogle Scholar
  40. 40.
    M.J. Tommalieh, A.M. Zihlif, Optical properties of polyimide/silica nanocomposite. Phys. B 405(23), 4750–4754 (2010)ADSCrossRefGoogle Scholar
  41. 41.
    I.S. Yahia, A.A.M. Farag, M. Cavas, F. Yakuphanoglu, Effects of stabilizer ratio on the optical constants and optical dispersion parameters of ZnO nano-fiber thin films. Superlattices Microstruct. 53, 63–75 (2013)ADSCrossRefGoogle Scholar
  42. 42.
    E. Güneri, A. Kariper, Optical properties of amorphous CuS thin films deposited chemically at different pH values. J. Alloys Compd. 516, 20–26 (2012)CrossRefGoogle Scholar
  43. 43.
    F. Göde, Annealing temperature effect on the structural, optical and electrical properties of ZnS thin films. Phys. B 406(9), 1653–1659 (2011)ADSCrossRefGoogle Scholar
  44. 44.
    G.B. Sakr, I.S. Yahia, M. Fadel, S.S. Fouad, N. Romčević, Optical spectroscopy, optical conductivity, dielectric properties and new methods for determining the gap states of CuSe thin films. J. Alloy. Compd. 507(2), 557–562 (2010)CrossRefGoogle Scholar
  45. 45.
    S.H. Wemple, M. DiDomenico Jr, Behavior of the electronic dielectric constant in covalent and ionic materials. Phys. Rev. B 3(4), 1338 (1971)ADSCrossRefGoogle Scholar
  46. 46.
    S.H. Wemple, Refractive-index behavior of amorphous semiconductors and glasses. Phys. Rev. B 7(8), 3767 (1973)ADSCrossRefGoogle Scholar
  47. 47.
    S.H. Wemple, M. DiDomenico Jr, Optical dispersion and the structure of solids. Phys. Rev. Lett. 23(20), 1156 (1969)ADSCrossRefGoogle Scholar
  48. 48.
    M. Fadel, S.A. Fayek, M.O. Abou-Helal, M.M. Ibrahim, A.M. Shakra, Structural and optical properties of SeGe and SeGeX (X = In, Sb and Bi) amorphous films. J. Alloy. Compd. 485(1), 604–609 (2009)CrossRefGoogle Scholar
  49. 49.
    S.A. Khan, F.S. Al-Hazmi, S. Al-Heniti, A.S. Faidah, A.A. Al-Ghamdi, Effect of cadmium addition on the optical constants of thermally evaporated amorphous Se–S–Cd thin films. Curr. Appl. Phys. 10(1), 145–152 (2010)ADSCrossRefGoogle Scholar
  50. 50.
    A. El-Korashy, H. El-Zahed, M. Radwan, Optical studies of [N(CH3)4]2CoCl4, [N(CH3)4]2MnCl4 single crystals in the normal paraelectric phase. Phys. B 334(1), 75–81 (2003)ADSCrossRefGoogle Scholar
  51. 51.
    M.M. Wakkad, E.K. Shokr, S.H. Mohamed, Optical and calorimetric studies of Ge–Sb–Se glasses. J. Non Cryst. Solids 265(1), 157–166 (2000)ADSCrossRefGoogle Scholar
  52. 52.
    J.I. Pankove, Optical Processes in Semiconductors (Dover Publications Inc., New York, 1975), p. 91Google Scholar
  53. 53.
    A.F. Mansour, S.F. Mansour, M.A. Abdo, Improvement structural and optical properties of ZnO/PVA nanocomposites. IOSR J. Appl. Phys. 7(2), 60–69 (2015)Google Scholar
  54. 54.
    J.I. Pankove, Optical Processes in Semiconductors (Prentice Hall, New York, 1971)Google Scholar
  55. 55.
    P. Krishnan, K. Gayathri, S. Gunasekaran, G. Anbalagan, Optical, spectral and thermal properties of organic nonlinear optical single crystal: 2,3-dimethoxy-10-oxostrychnidinium hydrogen oxalate dihydrate. Optik Int. J. Light Electron. Opt. 125(15), 3852–3859 (2014)CrossRefGoogle Scholar
  56. 56.
    T.C. Girisun, S. Dhanuskodi, Linear and nonlinear optical properties of tris thiourea zinc sulphate single crystals. Cryst. Res. Technol. 44(12), 1297–1302 (2009)CrossRefGoogle Scholar
  57. 57.
    I.S. Yahiaa, H.Y. Zahrana, F.H. Alamrib, Synth. Met. 222, 186–191 (2016)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Physics and Engineering Mathematics Department, Faculty of Electronic EngineeringMenoufia UniversityMenoufEgypt
  2. 2.Science and Technology Center of Excellence (STCE)El-Salam CityEgypt

Personalised recommendations