Applied Physics A

, 124:603 | Cite as

Investigations of magnetic and ferroelectric properties of multiferroic Sr-doped bismuth ferrite

  • Mahendra V. Shisode
  • Jitendra S. Kounsalye
  • Ashok V. Humbe
  • Rahul C. Kambale
  • K. M. JadhavEmail author


Strontium substituted bismuth ferrite (Bi1−xSrxFeO3 with x = 0.05, 0.15 and 0.25) multiferroic nanoparticles were successfully synthesized by a simple sol–gel auto combustion technique to study the effect of Sr2+ varying with a concentration on their structural and multiferroic properties. X-ray diffraction patterns confirmed the phase purity of Bi1−xSrxFeO3 samples having a hexagonal structure with R3c space group. The lattice parameters ‘a’ and ‘c’ decrease, whereas the unit cell volume contracts with increasing Sr2+ concentration in BFO. Fourier transform infrared spectroscopy analysis was employed to study the chemical bonds present. Field-emission scanning electron microscopy images of samples show agglomerated nanoparticles with varying average grain sizes 61 and 32 nm. The elemental composition was confirmed using energy-dispersive spectrum analysis. Vibrating sample magnetometer analysis at room temperature showed a significant change in magnetization on Sr2+ substituted BFO with increased saturation magnetization value (Ms = 5.55 emu/g) at x = 0.25 composition. PE loop tracer used to study the ferroelectric properties and the observed diverse properties of Sr2+ substituted BFO show applicability for multifunctional devices like actuators.



One of the authors MVS is thankful to IIT Madras, Chennai for providing VSM facility.


  1. 1.
    W. Eerenstein, N. Mathur, J.F. Scott, Multiferroic and magnetoelectric materials. Nature 442, 759 (2006)ADSCrossRefGoogle Scholar
  2. 2.
    C. Ederer, N.A. Spaldin, Weak ferromagnetism and magnetoelectric coupling in bismuth ferrite. Phys. Rev. B 71, 060401 (2005)ADSCrossRefGoogle Scholar
  3. 3.
    A.A. Belik, H. Yusa, N. Hirao, Y. Ohishi, E. Takayama-Muromachi, Structural properties of multiferroic BiFeO3 under hydrostatic pressure. Chem. Mater. 21, 3400–3405 (2009)CrossRefGoogle Scholar
  4. 4.
    N. Jeon, D. Rout, I.W. Kim, S.-J.L. Kang, Enhanced multiferroic properties of single-phase BiFeO3 bulk ceramics by Ho doping. Appl. Phys. Lett. 98, 072901 (2011)ADSCrossRefGoogle Scholar
  5. 5.
    M. Brahmi, S.A. Aldulmani, M. Amami, Effect of Mg substitution on room temperature dielectric and magnetic properties of Sr-doped bismuth ferrite. J. Supercond. Novel Magn. 30, 2541–2547 (2017)CrossRefGoogle Scholar
  6. 6.
    S. Singh, K. Maruyama, H. Ishiwara, Reduced leakage current in La and Ni codoped BiFeO3 thin films. Appl. Phys. Lett. 91, 112913 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    R. Ramesh, N.A. Spaldin, Multiferroics: Progress and Prospects in Thin Films, Nanoscience and Technology: A Collection of Reviews from Nature Journals (World Scientific, Singapore, 2010), pp. 20–28Google Scholar
  8. 8.
    S. Trukhanov, A. Trukhanov, V. Kostishyn, L. Panina, V. Turchenko, I. Kazakevich, A.V. Trukhanov, E. Trukhanova, V. Natarov, A. Balagurov, Thermal evolution of exchange interactions in lightly doped barium hexaferrites. J. Magn. Magn. Mater. 426, 554–562 (2017)ADSCrossRefGoogle Scholar
  9. 9.
    S. Trukhanov, A. Trukhanov, V. Kostishyn, L. Panina, A.V. Trukhanov, V. Turchenko, D. Tishkevich, E. Trukhanova, V. Oleynik, O. Yakovenko, Magnetic, dielectric and microwave properties of the BaFe12−xGaxO19 (x ≤ 1.2) solid solutions at room temperature. J. Magn. Magn. Mater. 442, 300–310 (2017)ADSCrossRefGoogle Scholar
  10. 10.
    S. Trukhanov, A. Trukhanov, L. Panina, V. Kostishyn, V. Turchenko, E. Trukhanova, A.V. Trukhanov, T. Zubar, V. Ivanov, D. Tishkevich, Temperature evolution of the structure parameters and exchange interactions in BaFe12−xInxO19. J. Magn. Magn. Mater. 466, 393–405 (2018)ADSCrossRefGoogle Scholar
  11. 11.
    S. Trukhanov, A. Trukhanov, V. Kostishin, L. Panina, I. Kazakevich, V. Turchenko, V. Kochervinskii, Coexistence of spontaneous polarization and magnetization in substituted M-type hexaferrites BaFe12−xAlxO19 (x ≤ 1.2) at room temperature. JETP Lett. 103, 100–105 (2016)ADSCrossRefGoogle Scholar
  12. 12.
    J. Wei, D. Xue, Low-temperature synthesis of BiFeO3 nanoparticles by ethylenediaminetetraacetic acid complexing sol–gel process. Mater. Res. Bull. 43, 3368–3373 (2008)CrossRefGoogle Scholar
  13. 13.
    M.Y. Shami, M. Awan, M. Anis-ur-Rehman, Phase pure synthesis of BiFeO3 nanopowders using diverse precursor via co-precipitation method. J. Alloy Compd. 509, 10139–10144 (2011)CrossRefGoogle Scholar
  14. 14.
    C. Chen, J. Cheng, S. Yu, L. Che, Z. Meng, Hydrothermal synthesis of perovskite bismuth ferrite crystallites. J. Cryst. Growth 291, 135–139 (2006)ADSCrossRefGoogle Scholar
  15. 15.
    S. Godara, N. Sinha, G. Ray, B. Kumar, Combined structural, electrical, magnetic and optical characterization of bismuth ferrite nanoparticles synthesized by auto-combustion route. J. Asian Ceram. Soc. 2, 416–421 (2014)CrossRefGoogle Scholar
  16. 16.
    M.V. Shisode, D.N. Bhoyar, P.P. Khirade, K. Jadhav, Structural, microstructural, magnetic, and ferroelectric properties of Ba2+-doped BiFeO3 nanocrystalline multifferroic material. J. Supercond. Novel Magn. 31, 2501–2509 (2018)CrossRefGoogle Scholar
  17. 17.
    V. Vinayak, P.P. Khirade, S.D. Birajdar, R. Alange, K. Jadhav, Electrical and dielectrical properties of low-temperature-synthesized nanocrystalline Mg2+-substituted cobalt spinel ferrite. J. Supercond. Novel Magn. 28, 3351–3356 (2015)CrossRefGoogle Scholar
  18. 18.
    M. Bellakki, V. Manivannan, Citrate-gel synthesis and characterization of yttrium-doped multiferroic BiFeO3. J. Sol Gel Sci. Technol. 53, 184–192 (2010)CrossRefGoogle Scholar
  19. 19.
    R.S. Jaiparkash, R. Chauhan, P. Kumar, A. Kumar, Kumar, Structural, dielectric and magnetic studies of multiferroics Bi1−xSrxFeO3 (x = 0.1, 0.2, 0.3, 0.4, and 0.5). Solid State Sci. 72, 5–9 (2017)ADSCrossRefGoogle Scholar
  20. 20.
    Z.-J. Li, Z.-L. Hou, W.-L. Song, X.-D. Liu, D.-W. Wang, J. Tang, X.-H. Shao, Mg-substitution for promoting magnetic and ferroelectric properties of BiFeO3 multiferroic nanoparticles. Mater. Lett. 175, 207–211 (2016)CrossRefGoogle Scholar
  21. 21.
    P. Raksa, S. Pinitsoontorn, S. Maensiri, Structural, magnetic properties and dye-sensitized solar cells application of pure and La doped BiFeO3 powders prepared by sol–gel. Ferroelectrics 492, 150–158 (2016)CrossRefGoogle Scholar
  22. 22.
    B. Yu, M. Li, J. Liu, D. Guo, L. Pei, X. Zhao, Effects of ion doping at different sites on electrical properties of multiferroic BiFeO3 ceramics. J. Phys. D Appl. Phys. 41, 065003 (2008)ADSCrossRefGoogle Scholar
  23. 23.
    A. Mukherjee, S. Basu, P. Manna, S. Yusuf, M. Pal, Enhancement of multiferroic properties of nanocrystalline BiFeO3 powder by Gd-doping. J. Alloy Compd. 598, 142–150 (2014)CrossRefGoogle Scholar
  24. 24.
    A. Chaudhuri, K. Mandal, Study of structural, ferromagnetic and ferroelectric properties of nanostructured barium doped bismuth ferrite. J. Magn. Magn. Mater. 353, 57–64 (2014)ADSCrossRefGoogle Scholar
  25. 25.
    V. Khomchenko, M. Kopcewicz, A. Lopes, Y. Pogorelov, J. Araujo, J. Vieira, A. Kholkin, Intrinsic nature of the magnetization enhancement in heterovalently doped Bi1−xAxFeO3 (A = Ca, Sr, Pb, Ba) multiferroics. J. Phys. D Appl. Phys. 41, 102003 (2008)ADSCrossRefGoogle Scholar
  26. 26.
    A.V. Trukhanov, S.V. Trukhanov, L.V. Panina, V.G. Kostishyn, D.N. Chitanov, S.K. Il’ya, A.V. Trukhanov, V.A. Turchenko, M.M. Salem, Strong corelation between magnetic and electrical subsystems in diamagnetically substituted hexaferrites ceramics. Ceram. Int. 43, 5635–5641 (2017)CrossRefGoogle Scholar
  27. 27.
    S. Trukhanov, A. Trukhanov, V. Turchenko, A.V. Trukhanov, E. Trukhanova, D. Tishkevich, V. Ivanov, T. Zubar, M. Salem, V. Kostishyn, Polarization origin and iron positions in indium doped barium hexaferrites. Ceram. Int. 44, 290–300 (2018)CrossRefGoogle Scholar
  28. 28.
    V. Ketsko, E. Beresnev, M. Kop’Eva, L. Elesina, A. Baranchikov, A. Stognii, A. Trukhanov, N. Kuznetsov, Specifics of pyrohydrolytic and solid-phase syntheses of solid solutions in the (MgGa2O4)x (MgFe2O4)1−x system. Russ. J. Inorg. Chem. 55, 427–429 (2010)CrossRefGoogle Scholar
  29. 29.
    A. Trukhanov, A. Stognij, S. Trukhanov, A. Geraskin, V. Ketsko, Crystal structure and magnetic properties of nanosized Mg(Fe0.8Ga0.2)2O4-δ films on Si substrates. Crystallogr. Rep. 58, 498–504 (2013)ADSCrossRefGoogle Scholar
  30. 30.
    G. Dhir, P. Uniyal, N. Verma, Multiferroic properties of Sr-doped BiFeO3 nanoparticles. Phys. B 531, 51–57 (2018)ADSCrossRefGoogle Scholar
  31. 31.
    B. Wang, S. Wang, L. Gong, Z. Zhou, Structural, magnetic and photocatalytic properties of Sr2+-doped BiFeO3 nanoparticles based on an ultrasonic irradiation assisted self-combustion method. Ceram. Int. 38, 6643–6649 (2012)CrossRefGoogle Scholar
  32. 32.
    J.S. Kounsalye, P.B. Kharat, A.R. Chavan, A.V. Humbe, R. Borade, K. Jadhav, Symmetry transition via tetravalent impurity and investigations on magnetic properties of Li0.5Fe2.5O4, in AIP Conference Proceedings (AIP Publishing, 2018), p. 050067Google Scholar
  33. 33.
    S. Trukhanov, Investigation of stability of ordered manganites. J. Exp. Theor. Phys. 101, 513–520 (2005)ADSCrossRefGoogle Scholar
  34. 34.
    S. Trukhanov, A. Trukhanov, H. Szymczak, R. Szymczak, M. Baran, Thermal stability of A-site ordered PrBaMn2O6 manganites. J. Phys. Chem. Solids 67, 675–681 (2006)ADSCrossRefGoogle Scholar
  35. 35.
    D.C. Arnold, K.S. Knight, F.D. Morrison, P. Lightfoot, Ferroelectric-paraelectric transition in BiFeO3: crystal structure of the orthorhombic β phase. Phys. Rev. Lett. 102, 027602 (2009)ADSCrossRefGoogle Scholar
  36. 36.
    L. Awin , B.J. Kennedy, M. Avdeev, Structural and magnetic studies of A site doped LaRh1−xCuxO3(A=Ca2+, Sr2+, Pb2+ and Bi3+), Ceram. Int. 39, S233–S237 (2013)CrossRefGoogle Scholar
  37. 37.
    J. Ahmad, S.H. Bukhari, T. Sultan, G. Murtaza, N.U. Rehman, M.W. Amin, Effect of Sr2+ doping on the structural, electrical and optical properties of BiFeO3, Chin. J. Phys. (2018). (in press)CrossRefGoogle Scholar
  38. 38.
    S. Trukhanov, A. Trukhanov, A. Vasil’ev, A. Maignan, H. Szymczak, Critical behavior of La0.825Sr0.175MnO2.912 anion-deficient manganite in the magnetic phase transition region. JETP Lett. 85, 507–512 (2007)CrossRefGoogle Scholar
  39. 39.
    S. Trukhanov, A. Trukhanov, H. Szymczak, C. Botez, A. Adair, Magnetotransport properties and mechanism of the A-site ordering in the Nd–Ba optimal-doped manganites. J. Low Temp. Phys. 149, 185–199 (2007)ADSCrossRefGoogle Scholar
  40. 40.
    A. Hegab, I.A. Farag, A. EL-Shabiny, A. Nassaar, A. Ramadan, A. Moustafa, Role of Sr doping on transport and magnetic properties of bismuth ferrite in correlation with defect formation. J. Mater. Sci. Mater. Electron. 28, 14460–14470 (2017)CrossRefGoogle Scholar
  41. 41.
    M. Rangi, A. Agarwal, S. Sanghi, R. Singh, S. Meena, A. Das, Crystal structure and magnetic properties of Bi0.8A0.2FeO3 (A = La, Ca, Sr, Ba) multiferroics using neutron diffraction and Mossbauer spectroscopy. AIP Adv. 4, 087121 (2014)ADSCrossRefGoogle Scholar
  42. 42.
    T. Hussain, S.A. Siddiqi, S. Atiq, M. Awan, Induced modifications in the properties of Sr doped BiFeO3 multiferroics. Progr. Nat. Sci. Mater. Int. 23, 487–492 (2013)CrossRefGoogle Scholar
  43. 43.
    S. Trukhanov, A. Trukhanov, A. Vasiliev, H. Szymczak, Frustrated exchange interactions formation at low temperatures and high hydrostatic pressures in La0.70Sr0.30MnO2.85. J. Exp. Theor. Phys. 111, 209–214 (2010)ADSCrossRefGoogle Scholar
  44. 44.
    S. Trukhanov, A. Trukhanov, A. Vasiliev, A. Balagurov, H. Szymczak, Magnetic state of the structural separated anion-deficient La0.70Sr0.30MnO2.85 manganite. J. Exp. Theor. Phys. 113, 819–825 (2011)ADSCrossRefGoogle Scholar
  45. 45.
    A.V. Humbe, A.C. Nawle, A. Shinde, K. Jadhav, Impact of Jahn Teller ion on magnetic and semiconducting behaviour of Ni–Zn spinel ferrite synthesized by nitrate–citrate route. J. Alloy. Compd. 691, 343–354 (2017)CrossRefGoogle Scholar
  46. 46.
    M. Gabal, R.M. El-Shishtawy, Y. Al Angari, Structural and magnetic properties of nano-crystalline Ni–Zn ferrites synthesized using egg-white precursor. J. Magn. Magn. Mater. 324, 2258–2264 (2012)ADSCrossRefGoogle Scholar
  47. 47.
    A.V. Humbe, J.S. Kounsalye, M.V. Shisode, K. Jadhav, Rietveld refinement, morphology and superparamagnetism of nanocrystalline Ni0.70−xCuxZn0.30Fe2O4 spinel ferrite. Ceram. Int. 44, 5466 (2018)CrossRefGoogle Scholar
  48. 48.
    R. Das, G. Gopal Khan, K. Mandal, Enhanced ferroelectric, magnetoelectric, and magnetic properties in Pr and Cr co-doped BiFeO3 nanotubes fabricated by template assisted route. J. Appl. Phys. 111, 104115 (2012)ADSCrossRefGoogle Scholar
  49. 49.
    A. Sagdeo, P. Mondal, A. Upadhyay, A. Sinha, A. Srivastava, S. Gupta, P. Chowdhury, T. Ganguli, S. Deb, Correlation of microstructural and physical properties in bulk BiFeO3 prepared by rapid liquid-phase sintering. Solid State Sci. 18, 1–9 (2013)ADSCrossRefGoogle Scholar
  50. 50.
    S. Pradhan, B. Roul, Electrical behavior of high resistivity Ce-doped BiFeO3 multiferroic. Phys. B 407, 2527–2532 (2012)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Mahendra V. Shisode
    • 1
  • Jitendra S. Kounsalye
    • 1
  • Ashok V. Humbe
    • 1
  • Rahul C. Kambale
    • 2
  • K. M. Jadhav
    • 1
    Email author
  1. 1.Department of PhysicsDr. Babasaheb Ambedkar Marathwada UniversityAurangabadIndia
  2. 2.Department of PhysicsSavitribai Phule Pune UniversityPuneIndia

Personalised recommendations