Applied Physics A

, 124:601 | Cite as

Role of substrate temperature on the ammonia gas sensing performance of Mg-doped ZnO thin films deposited by spray pyrolysis technique: application in breath analysis devices

  • S. Goudarzi
  • K. KhojierEmail author


This research investigates the role of substrate temperature on crystallographic structure, surface morphology, and subsequently ammonia gas sensing performance of Mg-doped ZnO thin films as a breath analysis device. The Mg-doped ZnO thin films were deposited by spray pyrolysis technique on glass substrates at different temperatures (125 °C, 250 °C, 375 °C, and 500 °C). Crystallographic structure, surface morphology, and chemical composition of the samples were characterized using X-ray diffraction (XRD) method, atomic force microscopy (AFM), and field emission scanning electron microscopy (FESEM). Ammonia sensing characteristics of the samples were studied at room temperature and relative humidity of 80%. The results revealed that the Mg-doped ZnO thin film deposited at 375 °C showed the most sensitivity to ammonia gas. Selectivity and reliability (reproducibility as well as short and long time stability) of the mentioned sample were also investigated. The results showed that the Mg-doped ZnO thin film deposited at 375 °C can be a good candidate to sense the ammonia as a breath analysis device due to its good sensitivity, selectivity, and reliability at high-relative humidity.



This work was carried out with the support of the Islamic Azad University, Hamedan branch. The authors are thankful to Dr. Reza Mobashshernia for his contribution.


  1. 1.
    K.M. Paschke, A. Mashir, R.A. Dweik, Med. Rep. 2(56), 1 (2010)Google Scholar
  2. 2.
    R.A. Dweik, A. Amann, J. Breath Res. 2, 030301 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    A. Staerz, U. Weimar, N. Barsan, Sens. 16, 1815 (2016)CrossRefGoogle Scholar
  4. 4.
    M. Righettoni, A. Amann, S.E. Pratsinis, Mater. Today 18(3), 163 (2015)CrossRefGoogle Scholar
  5. 5.
    U. Tisch, H. Haick, J. Breath Res. 8(2), 027103 (2014)ADSCrossRefGoogle Scholar
  6. 6.
    R.P. Arasaradnam, J.A. Covington, C. Harmston, C.U. Nwokolo, Aliment. Pharm. Ther. 39(8), 780 (2014)CrossRefGoogle Scholar
  7. 7.
    S.P. Eckel, J. Baumbach, A.C. Hauschild, J. Breath Res. 8(1), 012001 (2014)ADSCrossRefGoogle Scholar
  8. 8.
    K.H. Kim, S.A. Jahan, E. Kabir, Trac-Trend. Anal. Chem. 33, 1 (2012)CrossRefGoogle Scholar
  9. 9.
    I.D. Kim, S.J. Choi, S.J. Kim, J.S. Jang, Smart sensors for health and environment monitoring, KAIST Research Series (2015). Google Scholar
  10. 10.
    H.G. Moon, Y.R. Choi, Y.S. Shim, K. Choi, J.H. Lee, J.S. Kim, S.J. Yoon, H.H. Park, C.Y. Kang, H.W. Jang, Appl. Mater. Interface 5(21), 10591 (2013)CrossRefGoogle Scholar
  11. 11.
    C. Imawan, F. Solzbacher, H. Steffes, E. Obermeier, Sens. Actuators B Chem. 64, 193 (2000)CrossRefGoogle Scholar
  12. 12.
    G.K. Mani, J.B.B. Rayappan, Sens. Actuators B Chem. 183, 459 (2013)CrossRefGoogle Scholar
  13. 13.
    G.K. Mani, J.B.B. Rayappan, J. Alloys Compd. 582, 414 (2014)CrossRefGoogle Scholar
  14. 14.
    N.L. Tarwal, A.R. Patil, N.S. Harale, A.V. Rajgure, S.S. Suryavanshi, W.R. Bae, P.S. Patil, J.H. Kim, J.H. Jang, J. Alloys Compd. 598, 282 (2014)CrossRefGoogle Scholar
  15. 15.
    G.K. Mani, J.B.B. Rayappan, Appl. Surf. Sci. 311, 405 (2014)ADSCrossRefGoogle Scholar
  16. 16.
    A.J. Kulandaisamy, J.R. Reddy, P. Srinivasan, K.J. Babu, G.K. Mani, P. Shankar, J.B.B. Rayappan, J. Alloys Compd. 688, 422 (2016)CrossRefGoogle Scholar
  17. 17.
    R. Mariappan, V. Ponnuswamy, R. Suresh, P. Suresh, A. Chandra Bose, M. Ragavendar, J. Alloys Compd. 582, 387 (2014)CrossRefGoogle Scholar
  18. 18.
    S. Goudarzi, K. Khojier, AIP Conference Proceeding 1920, 020049 (2018)Google Scholar
  19. 19.
    B. Fruhberger, N. Stirling, F.G. Grillo, S. Ma, D. Ruthven, R.J. Lad, B.G. Frederick, Sens. Actuators B Chem. 76, 226 (2001)CrossRefGoogle Scholar
  20. 20.
    S. Luo, Y. Shen, Z. Wu, M. Cao, F. Gu, L. Wang, Mater. Sci. Semicond. Process. 41, 535 (2016)CrossRefGoogle Scholar
  21. 21.
    B.E. Warren, X-ray diffraction (Addison Wesley Publishing Co., London, 1969)Google Scholar
  22. 22.
    K. Khojier, H. Savaloni, E. Amani, Appl. Surf. Sci. 289, 564 (2014)ADSCrossRefGoogle Scholar
  23. 23.
    F.H. Chung, D.K. Smith, Industrial applications of X-ray diffraction (Marcel Dekker Publisher, New York, 1999)CrossRefGoogle Scholar
  24. 24.
    K. Khojier, H. Savaloni, Z. Ashkabusi, N.Z. Dehnavi, Appl. Surf. Sci. 284, 489 (2013)ADSCrossRefGoogle Scholar
  25. 25.
    J.H. Li, Y.C. Liu, C.L. Shao, X.T. Zhang, D.Z. Shen, Y.M. Lu, J.Y. Zhang 283, 513 (2005)Google Scholar
  26. 26.
    D.R. Patil, L.A. Patil, P.P. Patil, Sens. Actuators B 126, 368 (2007)CrossRefGoogle Scholar
  27. 27.
    K. Khojier, H. Savaloni, N. Habashi, M.H. Sadi, Mater. Sci. Semicond. Process. 41, 177 (2016)CrossRefGoogle Scholar
  28. 28.
    K. Khojier, H. Savaloni, S. Zolghadr, Appl. Surf. Sci. 320, 315 (2014)ADSCrossRefGoogle Scholar
  29. 29.
    P.P. Sahay, J. Mater. Sci. 40, 4383 (2005)ADSCrossRefGoogle Scholar
  30. 30.
    T. Gao, T.H. Wang, Appl. Phys. A 80, 1451 (2005)ADSCrossRefGoogle Scholar
  31. 31.
    S. Zolghadr, K. Khojier, S. Kimiagar, Mater. Sci. Semicond. Process. 54, 6 (2016)CrossRefGoogle Scholar
  32. 32.
    P.S. Grace, J.J. Devadasan, K. Jeyadheepan, G.J. Thangam, (2017) CrossRefGoogle Scholar
  33. 33.
    A.T. Güntner, M. Righettoni, S.E. Pratsinis, Sens. Actuators B 223, 266 (2016)CrossRefGoogle Scholar
  34. 34.
    A.G. Bannov, J. Prášekb, O. Jašekc, A.A. Shibaeva, L. Zajíčková, Proc. Eng. 168, 231 (2016)Google Scholar
  35. 35.
    M.S. Shinde, S.S. Samanta, M.S. Sonawane, P.B. Ahirrao, R.S. Patil, J. Nano. Adv. Mat. 3, 99 (2015)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physics, Hamedan BranchIslamic Azad UniversityHamedanIran
  2. 2.Department of Physics, Chalous BranchIslamic Azad UniversityChalousIran

Personalised recommendations