Advertisement

Applied Physics A

, 124:593 | Cite as

Performance evaluation of normally ON/OFF junctionless vertical channel GaN FET

  • Ball Mukund Mani Tripathi
  • Shyama Prasad Das
Article
  • 75 Downloads

Abstract

GaN vertical channel junction field-effect transistor (VC-JFET) is a relatively new technology, which is particularly suitable for high-power applications. In these devices, the channel is formed between two p-GaN current blocking layers which is a complex and costly process. In addition, various traps and defects get introduced during the fabrication of p-GaN layers. The traps and defects near the interface of the p-GaN layer and n-GaN channel can deteriorate the device performance. Therefore, for reducing the fabrication complexity with enhanced device performance, a normally ON/OFF GaN vertical channel junctionless field-effect transistor (VC-JLFET) is proposed in this paper. The results are compared against conventional GaN VC-junction field-effect transistor (VC-JFET) of the equal dimensions and doping concentrations. The absence of p–n junction at source and drain in the proposed device offers less fabrication complexity, cost, and thermal budget as compared to the referenced device. The proposed device provides more than four times drain current (\(8.37\times 10^{-6}\) A/μm) as compared to the referenced device (\(1.9 \times 10^{-6}\) A/μm) at similar physical and bias conditions. The obtained values of ON resistance, trans-conductance, unity gain bandwidth frequency, and breakdown voltage for the proposed normally ON device (at Lap = 0.9 μm, Vth = −3.5 V, VG = −1V, VD = 1 V) are 5.63 × 103 Ω/μm, 6.99 × 10−7 S/μm, 1.56 × 108 Hz and 700 V, respectively. While in normally OFF mode, the obtained values of parameters such as threshold voltage, ON resistance, breakdown voltage, and drain current are 2 V, \(1.56 \times 10^{6}\) Ω/μm, greater than 1000 V and \(1.54 \times 10^{-6}\)A/μm, respectively. The normally OFF VC-JLFET is achieved by gate work-function engineering in conjunction with doping optimization.

Keywords

VC-JLFET—vertical channel junction-less field-effect transistor 2-DEG—two-dimensional electron gases 

References

  1. 1.
    I. Ferain, C.A. Colinge, J.P. Colinge, Multigate transistors as the future of classical metal-oxide-semiconductor field-effect transistors. Nature 479(7373), 310–316 (2011)ADSCrossRefGoogle Scholar
  2. 2.
    M. Ieong, V. Narayanan, D. Singh, A. Topol, V. Chan, Z. Ren, Transistor scaling with novel materials. Mater. Today 9(6), 26–31 (2006)CrossRefGoogle Scholar
  3. 3.
    J. Ramos, E. Augendre, A. Kottantharayil, A. Mercha, E. Simoen, M. Rosmeulen, S. Severi, C. Kerner, T. Chiarella, A. Nackaerts, Experimental evidence of short-channel electron mobility degradation caused by interface charges located at the gate-edge of triple-gate FinFETs. Solid-State and Integrated Circuit Technology, 2006. ICSICT’06. 8th International Conference on, p. 72–74, (2006)Google Scholar
  4. 4.
    P. Rastogi, T. Dutta, S. Kumar, A. Agarwal, Y.S. Chauhan, Quantum confinement effects in extremely thin body germanium n-MOSFETs. IEEE Trans. Electron Devices 62(11), 3575–3580 (2015)ADSCrossRefGoogle Scholar
  5. 5.
    K. Boucart, A.M. Ionescu, Double-gate Tunnel FET with high gate dielectric. IEEE Trans. Electron Devices 54(7), 1725–1733 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    C.H. Shih, N.D. Chien, Sub-10-nm tunnel field-effect transistor with graded Si/Ge heterojunction. IEEE Electron Device Lett. 32(11), 1498–1500 (2011)ADSCrossRefGoogle Scholar
  7. 7.
    J.P. Colinge, C.W. Lee, A. Afzalian, N.D. Akhavan, R. Yan, I. Ferain, P. Razavi, B. O’neill, A. Blake, M. White, Nanowire transistors without junctions. Nat. Nanotechnol. 5(3), 225–229 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    C.W. Lee, A. Afzalian, N.D. Akhavan, R. Yan, I. Ferain, J.P. Colinge, Junctionless multigate field-effect transistor. Appl. Phys. Lett. 94(5), 053511 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    S.B. Rahi, B. Ghosh, High-k double gate junctionless tunnel FET with a tunable bandgap. RSC Adv. 5(67), 54544–54550 (2015)CrossRefGoogle Scholar
  10. 10.
    Wideband Gap Device. Wideband gap device market—a focus on electronics industry to 2020 (2012)Google Scholar
  11. 11.
    U.K. Mishra, L. Shen, T.E. Kazior, Y.F. Wu, GaN-based RF power devices and amplifiers. Proc. IEEE 96(2), 287–305 (2008)CrossRefGoogle Scholar
  12. 12.
    A. Lidow, J. Strydom, R.M. De, D. Reusch, GaN transistors for efficient power conversion (Wiley, New Jersey, 2014)CrossRefGoogle Scholar
  13. 13.
    A. Lidow, GaN transistors giving new life to Moore’s Law. In Power Semiconductor Devices & IC’s (ISPSD), 2015 IEEE 27th International Symposium on, IEEE, (2015), p. 1–6Google Scholar
  14. 14.
    W. Liu, Fundamentals of III-V Devices HBTs, MESFETs, and HFETs/HEMTs (Wiley, New Jersey, 1999)Google Scholar
  15. 15.
    E.O. Johnson, Physical limitations on frequency and power parameters of transistors. IEEE Spectr. 2, 49 (1965)Google Scholar
  16. 16.
    O. Ambacher, B. Foutz, J. Smart, J.R. Shealy, N.G. Weimann, K. Chu, M. Murphy, A.J. Sierakowski, W.J. Schaff, L.F. Eastman, Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN\(/\)GaN heterostructures. J. Appl. Phys. 87(1), 334–344 (2000)ADSCrossRefGoogle Scholar
  17. 17.
    Umesh K. Mishra, Primit Parikh, Yi-Feng Wu, Algan/gan hemts-an overview of device operation and applications. Proc. IEEE 90(6), 1022–1031 (2002)CrossRefGoogle Scholar
  18. 18.
    B. Jayant Baliga, Semiconductors for high-voltage, vertical channel field-effect transistors. J. Appl. Phys. 53(3), 1759–1764 (1982)ADSCrossRefGoogle Scholar
  19. 19.
    B.Jayant Baliga, Power semiconductor device figure of merit for high-frequency applications. IEEE Electron Device Lett. 10(10), 455–457 (1989)ADSCrossRefGoogle Scholar
  20. 20.
    Y. Wang, L. Ma, Z. Yu, L. Tian, Optimization of two-dimensional electron gases and I V characteristics for AlGaN/GaN HEMT devices. Superlattices Microstruct. 36(4), 869–875 (2004)ADSCrossRefGoogle Scholar
  21. 21.
    M.S. Miao, J.R. Weber, C.G. Van de Walle, Oxidation and the origin of the two-dimensional electron gas in AlGaN/GaN heterostructures. J. Appl. Phys. 107(12), 123713 (2010)ADSCrossRefGoogle Scholar
  22. 22.
    J. Piprek, Efficiency droop in nitride-based light-emitting diodes. Phys. Status Solidi (a) 207(10), 2217–2225 (2010)ADSCrossRefGoogle Scholar
  23. 23.
    T.R. Lenka, A.K. Panda, Effect of structural parameters on 2DEG density and C V characteristics of \(Al_xGa_{1-x}N/AlN/GaN\)-based HEMT. (2011)Google Scholar
  24. 24.
    E. Bahat-Treidel, F. Brunner, O. Hilt, E. Cho, J. Wurfl, G. Trankle, AlGaN/GaN/GaN C back-barrier HFETs with breakdown voltage of over 1 kV. IEEE Trans. Electron Devices 57(11), 3050–3058 (2010)ADSCrossRefGoogle Scholar
  25. 25.
    R. Chu, A. Corrion, M. Chen, R. Li, D. Wong, D. Zehnder, B. Hughes, K. Boutros, 1200-V normally off GaN-on-Si field-effect transistors with low dynamic on-resistance. IEEE Electron Device Lett. 32(5), 632–634 (2011)ADSCrossRefGoogle Scholar
  26. 26.
    Y. Dora, A. Chakraborty, L. McCarthy, S. Keller, S.P. DenBaars, U.K. Mishra, High breakdown voltage achieved on AlGaN\(/\)GaN HEMTs with integrated slant field plates. IEEE Electron Device Lett. 27(9), 713–715 (2006)ADSCrossRefGoogle Scholar
  27. 27.
    C. Yadav, P. Kushwaha, S. Khandelwal, J.P. Duarte, Y.S. Chauhan, C. Hu, Modeling of GaN-based normally-off FinFET. IEEE Electron Device Lett. 35(6), 612–614 (2014)ADSCrossRefGoogle Scholar
  28. 28.
    T.P. Chow, Z. Li, Recent advances in high-voltage GaN MOS-gated transistors for power electronics applications, GaN and ZnO-based Materials and Devices (Springer, Berlin, 2012), pp. 239–250CrossRefGoogle Scholar
  29. 29.
    M.A. Aziz, A. El-Abd, Theoretical study of the charge control in AlGaN/GaN HEMTs. in Radio Science Conference, 2006. NRSC 2006. Proceedings of the Twenty Third National, IEEE, (2006), p. 1–7Google Scholar
  30. 30.
    J.W. Chung, J.C. Roberts, E.L. Piner, T. Palacios, Effect of gate leakage in the subthreshold characteristics of AlGaN/GaN HEMTs. IEEE Electron Device Lett. 29(11), 1196–1198 (2008)ADSCrossRefGoogle Scholar
  31. 31.
    S.C. Binari, P.B. Klein, T.E. Kazior, Trapping effects in GaN and SiC microwave FETs. Proc. IEEE 90(6), 1048–1058 (2002)CrossRefGoogle Scholar
  32. 32.
    S. Chowdhury, B.L. Swenson, M.H. Wong, U.K. Mishra, Current status and scope of gallium nitride-based vertical transistors for high-power electronics application. Semicond. Sci. Technol. 28(7), 074014 (2013)ADSCrossRefGoogle Scholar
  33. 33.
    S. Chowdhury, U.K. Mishra, Lateral and vertical transistors using the AlGaN/GaN heterostructure. IEEE Trans. Electron Dev 60(10), 3060–3066 (2013)ADSCrossRefGoogle Scholar
  34. 34.
    T. Kachi, State-of-the-art GaN vertical power devices. in Electron Devices Meeting (IEDM), 2015 IEEE International, IEEE, (2015), p. 16–1Google Scholar
  35. 35.
    J.W. Chung, X. Zhao, T. Palacios, Estimation of trap density in AlGaN/GaN HEMTs from subthreshold slope study. in Device Research Conference, 2007 65th Annual, IEEE, (2007), p. 111–112Google Scholar
  36. 36.
    D. Ji, S. Chowdhury, Design of 1.2 kV Power Switches With Low ON Using GaN-Based Vertical JFET. IEEE Trans. Electron Devices 62(8), 2571–2578 (2015)ADSCrossRefGoogle Scholar
  37. 37.
    Y. Kagamitani, T. Kuribayashi, K. Hazu, T. Onuma, D. Tomida, R. Simura, S.F. Chichibu, K. Sugiyama, C. Yokoyama, T. Ishiguro, Ammonothermal epitaxy of wurtzite GaN using an NH 4 I mineralizer. J. Crystal Growth 312(22), 3384–3387 (2010)ADSCrossRefGoogle Scholar
  38. 38.
    Y. Mori, Y. Kitaoka, M. Imade, F. Kawamura, N. Miyoshi, M. Yoshimura, T. Sasaki, Growth of GaN crystals by Na flux LPE method. Phys. Status Solidi (a) 207(6), 1283–1286 (2010)ADSCrossRefGoogle Scholar
  39. 39.
    M. Kanechika, Mo Sugimoto, N. Soejima, H. Ueda, O. Ishiguro, M. Kodama, E. Hayashi, K. Itoh, T. Uesugi, T. Kachi, A vertical insulated gate AlGaN/GaN heterojunction field-effect transistor. Jpn J. Appl. Phys. 46(6L), L503 (2007)ADSCrossRefGoogle Scholar
  40. 40.
    A. Chen, S.J. Chua, P. Chen, X.Y. Chen, L.K. Jian, Fabrication of sub-100 nm patterns in SiO2 templates by electron-beam lithography for the growth of periodic III-V semiconductor nanostructures. Nanotechnology 17(15), 3903 (2006)ADSCrossRefGoogle Scholar
  41. 41.
    Maziar Farahmand, Carlo Garetto, Enrico Bellotti, Kevin F. Brennan, Michele Goano, Enrico Ghillino, Giovanni Ghione, John D. Albrecht, P.Paul Ruden, Monte carlo simulation of electron transport in the iii-nitride wurtzite phase materials system: binaries and ternaries. IEEE Trans. Electron Devices 48(3), 535–542 (2001)ADSCrossRefGoogle Scholar
  42. 42.
    S.M. Sze, G.I. Gibbons, Avalanche breakdown voltages of abrupt and linearly graded p–n junctions in ge, si, gaas, and gap. Appl. Phys. Lett. 8(5), 111–113 (1966)ADSCrossRefGoogle Scholar
  43. 43.
    Valeriya Kilchytska, Amaury Neve, Laurent Vancaillie, David Levacq, Stephane Adriaensen, Hans van Meer, Kristin De Meyer, Christine Raynaud, Morin Dehan, J.-P. Raskin et al., Influence of device engineering on the analog and rf performances of soi mosfets. IEEE Trans. Electron Devices 50(3), 577–588 (2003)ADSCrossRefGoogle Scholar
  44. 44.
    N. Mohankumar, Binit Syamal, Chandan Kumar Sarkar, Investigation of novel attributes of single halo dual-material double gate mosfets for analog/rf applications. Microelectron. Reliability 49(12), 1491–1497 (2009)CrossRefGoogle Scholar
  45. 45.
    Rupendra Kumar Sharma, Matthias Bucher, Device design engineering for optimum analog/rf performance of nanoscale dg mosfets. IEEE Transactions on Nanotechnology 11(5), 992–998 (2012)ADSCrossRefGoogle Scholar
  46. 46.
    G. Dambrine, C. Raynaud, Dimitri Lederer, Morin Dehan, O. Rozeaux, M. Vanmackelberg, F. Danneville, S. Lepilliet, J.-P. Raskin, What are the limiting parameters of deep-submicron mosfets for high frequency applications? IEEE Electron Device Lett. 24(3), 189–191 (2003)ADSCrossRefGoogle Scholar
  47. 47.
    Jiale Liang, Ru Han Xiao, Pengfei Wang Huang, Yangyuan Wang, Design optimization of structural parameters in double gate mosfets for rf applications. Semiconductor Sci.Technol. 23(5), 055019 (2008)ADSCrossRefGoogle Scholar
  48. 48.
    Denis Flandre, J.-P. Raskin, Danielle Vanhoenacker-Janvier, Soi cmos transistors for rf and microwave applications. Int. J. High Speed Electronics Syst. 11(04), 1159–1248 (2001)CrossRefGoogle Scholar
  49. 49.
    Pierre H. Woerlee, Mathijs J. Knitel, Ronald Van Langevelde, Dirk B.M. Klaassen, Luuk F. Tiemeijer,.Andries J. Scholten, Adrie TAZegers-van Duijnhoven, Rf-cmos performance trends. IEEE Trans. Electron Devices 48(8), 1776–1782 (2001)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Ball Mukund Mani Tripathi
    • 1
  • Shyama Prasad Das
    • 1
  1. 1.Department of Electrical EngineeringIIT KanpurKanpurIndia

Personalised recommendations