Applied Physics A

, 125:23 | Cite as

Excimer laser micromachining of indium tin oxide for fabrication of optically transparent metamaterial absorbers

  • Gaganpreet Singh
  • Harsh Sheokand
  • Saptarshi Ghosh
  • Kumar Vaibhav Srivastava
  • J. RamkumarEmail author
  • S. Anantha Ramakrishna


Excimer laser micromachining has been extensively studied to machine Indium Tin oxide which is uniformly deposited over PET to realize transparent broadband metamaterial absorbers. Various micromachining parameters such as fluence and spot overlap are considered and optimized to ablate the ITO film with controlled damage to the PET substrate for obtaining desired roughness to achieve uniform optical transmittance. A correlation has been developed between the generated roughness and optical transmittance of the machined area, so that any desired value of the optical transmittance can be achieved. Parameters for machining were selected in such a way that optical transmittance between machined and non-machined area are closely matched. Two different structures are demonstrated over a large area of about 243 mm2. To reduce the machining time of such a large area, an algorithm has been developed to determine the size of the masks for machining complex structures of any shape. Further, a thermal model is presented for better understanding of the ablation phenomenon. We conclude that the machining of ITO on PET substrates occurs via delamination of the ITO from the PET surface rather than a melt vaporization of the ITO.

Graphical abstract

List of symbols


Dimensions of feature to be ablated in structure (where i = 1, 2, 3 … n) (mm)


Size of mask for fabrication of Ai dimension (where m = 1, 2, 3 … n) (mm)


Maximum possible size of mask (mm)


Machining time with Xm (s)


Mask changing time (s)


Realignment time (s)


Laser ON time (s)


Average energy flux per unit time (averaged over the period of the wave) (W/m2)


Temperature dependent absorption coefficient of the material (1/m)


Density of the substrate material (kg/m3)


Specific heat capacity of the material at constant pressure (J/kg K)


Temperature (K)


Time (s)


Thermal conductivity of the material (W/m K)


Heat source (W/m2)




Young’s modulus of film (MPa)


Poisson’s ratio of the film


Coefficient of thermal expansion of the film


Young’s modulus of substrate (MPa)


Poisson’s ratio of substrate


Coefficient of thermal expansion of the substrate


Feed rate (mm/min)


Repetition rate (Hz)


Exposed length (mm)


Number of pulses at one spot




Distance traveled by the beam between two adjacent pulses (mm)

Supplementary material

339_2018_2013_MOESM1_ESM.xlsx (39 kb)
Supplementary material 1 (XLSX 38 KB)
339_2018_2013_MOESM2_ESM.xlsx (18 kb)
Supplementary material 2 (XLSX 18 KB)
339_2018_2013_MOESM3_ESM.xlsx (13 kb)
Supplementary material 3 (XLSX 12 KB)


  1. 1.
    S.K. Park, J.I. Han, W.K. Kim, M.G. Kwak, Thin Solid Films 397, 49 (2001)CrossRefADSGoogle Scholar
  2. 2.
    F.C. Krebs, H. Spanggard, T. Kjær, M. Biancardo, J. Alstrup, Mater. Sci. Eng. B Solid State Mater. Adv. Technol. 138, 106 (2007)CrossRefGoogle Scholar
  3. 3.
    D.-H. Kim, C.-O. Cho, Y.-G. Roh, H. Jeon, Y.S. Park, J. Cho, J.S. Im, C. Sone, Y. Park, W.J. Choi, Q.-H. Park, Appl. Phys. Lett. 87, 203508 (2005)CrossRefADSGoogle Scholar
  4. 4.
    K. Takizawa, O. Hashimoto, IEEE Trans. Microw. Theory Tech. 47, 1137 (1999)CrossRefADSGoogle Scholar
  5. 5.
    M. Inoue, T. Matsuoka, Y. Fujita, A. Abe, Jpn. J. Appl. Phys. 28, 274 (1989)CrossRefADSGoogle Scholar
  6. 6.
    M. Hoheisel, A. Mitwalsky, C. otzek, Phys. Status Solidi 123, 461 (1991)CrossRefADSGoogle Scholar
  7. 7.
    M. Mohri, H. Kakinuma, M. Sakamoto, H. Sawai, Jpn. J. Appl. Phys. 29, L1932 (1990)CrossRefADSGoogle Scholar
  8. 8.
    R. Tanaka, T. Takaoka, H. Mizukami, T. Arai, Y. Iwai, in Proceedings of SPIE Third International Symposium on Laser Precision Microfabrication, vol. 4830 (SPIE. Digital Library, 2003), p. 36Google Scholar
  9. 9.
    K.H. Kim, S.J. Kwon, H.S. Mok, T.O. Tak, Jpn. J. Appl. Phys. 46, 4282 (2007)CrossRefADSGoogle Scholar
  10. 10.
    K.H. Kim, S.J. Kwon, T.O. Tak, Jpn. J. Appl. Phys. 47, 197 (2008)CrossRefADSGoogle Scholar
  11. 11.
    Y. O, and T. M, Appl. Phys. Lett. 73, 2558 (1998)CrossRefADSGoogle Scholar
  12. 12.
    O. Yavas, C. Ochiai, M. Takai, Appl. Phys. A Mater. Sci. Process. 69, S875 (1999)CrossRefADSGoogle Scholar
  13. 13.
    A. Risch, R. Hellmann, Phys. Proc. 12, 133 (2011)CrossRefADSGoogle Scholar
  14. 14.
    G. Račiukaitis, M. Brikas, M. Gedvilas, T. Rakickas, Appl. Surf. Sci. 253, 6570 (2007)CrossRefADSGoogle Scholar
  15. 15.
    R. Tanaka, T. Takaoka, H. Mizukami, T. Arai, Y. Iwai, in Proceedings of SPIE Fourth International Symposium on Laser Precision Microfabrication, vol. 5063 (SPIE. Digital Library, 2003), pp. 370–373Google Scholar
  16. 16.
    M. Park, B.H. Chon, H.S. Kim, S.C. Jeoung, D. Kim, J.I. Lee, H.Y. Chu, H.R. Kim, Opt. Lasers Eng. 44, 138 (2006)CrossRefGoogle Scholar
  17. 17.
    D.A. Willis, A.L. Dreier, J. Phys. D. Appl. Phys. 42, 045306 (2009)CrossRefADSGoogle Scholar
  18. 18.
    S.N. Akhtar, S. Sharma, G. Dayal, S.A. Ramakrishna, J. Ramkumar, J. Micromech. Microeng. 25, 65001 (2015)CrossRefGoogle Scholar
  19. 19.
    E. Andrew, P.E. Dyer, R.D. Greenough, P.H. Key, Appl. Phys. Lett. 1076, 1076 (1983)CrossRefADSGoogle Scholar
  20. 20.
    O. Yavas, M. Takai, J. Appl. Phys. 85, 4207 (1999)CrossRefADSGoogle Scholar
  21. 21.
    G. Dayal, S. Nadeem Akhtar, S.A. Ramakrishna, J. Ramkumar, J. Micro Nano Manuf. 1, 031002 (2013)CrossRefGoogle Scholar
  22. 22.
    O.A. Ghandour, D. Constantinide, R. Sheets, in Proceedings of SPIE, Photon Processing in Microelectronics and Photonics, vol. 4637 (SPIE. Digital Library, 2002), pp. 90–101Google Scholar
  23. 23.
    T. Szörényi, Z. Kántor, L.D. Laude, Appl. Surf. Sci. 86, 219 (1995)CrossRefADSGoogle Scholar
  24. 24.
    B. Chiou, J. Lee, J. Mater. Sci. Mater. Electron. 7, 241–246 (1996)CrossRefGoogle Scholar
  25. 25.
    J.A. Jeong, J. Lee, H. Kim, H.K. Kim, S.I. Na, Sol. Energy Mater. Sol. Cells 94, 1840 (2010)CrossRefGoogle Scholar
  26. 26.
    S.F. Tseng, W.T. Hsiao, K.C. Huang, D. Chiang, M.F. Chen, C.P. Chou, Appl. Surf. Sci. 257, 1487 (2010)CrossRefADSGoogle Scholar
  27. 27.
    N.N. Tan, D.T. Hung, V.T. Anh, K. Bongchul, K. Hyunchul, Appl. Surf. Sci. 336, 163 (2015)CrossRefADSGoogle Scholar
  28. 28.
    H.K. Lin, W.C. Hsu, Appl. Surf. Sci. 308, 58 (2014)CrossRefADSGoogle Scholar
  29. 29.
    H. Sheokand, S. Ghosh, G. Singh, M. Saikia, K.V. Srivastava, J. Ramkumar, S.A. Ramakrishna, J. Appl. Phys. 122, 105105 (2017)CrossRefADSGoogle Scholar
  30. 30.
    E. Matthias, M. Reichling, J. Siegel, O.W. Kading, S. Petzoldt, H. Skurk, P. Bizenberger, E. Neske, Appl. Phys. A Mater. Sci. Process. 58, 129 (1994)CrossRefADSGoogle Scholar
  31. 31.
    V.J. Zaleckas, J.C. Koo, Appl. Phys. Lett. 31, 615 (1977)CrossRefADSGoogle Scholar
  32. 32.
    P. Rumsby, E. Harvey, D. Thomas, N. Rizvi, Microelectron. Packag. Laser Process. 3184, 176 (1997)CrossRefADSGoogle Scholar
  33. 33.
    J.G. Lunney, R.R. O’Neill, K. Schulmeister, Appl. Phys. Lett. 59, 647 (1991)CrossRefADSGoogle Scholar
  34. 34.
    T. Szörényi, L.D. Laude, I. Bertóti, Z. Kántor, Z. Geretovszky, J. Appl. Phys. 78, 6211 (1995)CrossRefADSGoogle Scholar
  35. 35.
    N. Torres, J.J. Robin, B. Boutevin, Eur. Polym. J. 36, 2075 (2000)CrossRefGoogle Scholar
  36. 36.
    N.B. Dahotre, S.R. Paital, A.N. Samant, C. Daniel, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 368, 1863 (2010)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Gaganpreet Singh
    • 1
  • Harsh Sheokand
    • 2
  • Saptarshi Ghosh
    • 2
  • Kumar Vaibhav Srivastava
    • 2
  • J. Ramkumar
    • 1
    Email author
  • S. Anantha Ramakrishna
    • 3
  1. 1.Department of Mechanical EngineeringIndian Institute of TechnologyKanpurIndia
  2. 2.Department of Electrical EngineeringIndian Institute of TechnologyKanpurIndia
  3. 3.Department of PhysicsIndian Institute of TechnologyKanpurIndia

Personalised recommendations