Applied Physics A

, 124:599 | Cite as

Investigation of interface traps at Si/SiO2 interface of SOI pMOSFETs induced by Fowler–Nordheim tunneling stress using the DCIV method

  • Xiaojing LiEmail author
  • Chuanbin Zeng
  • Ruiheng Wang
  • Linchun Gao
  • Weiwei Yan
  • Jiajun Luo
  • Zhengsheng Han


The changes of interface trap density and distribution at the Si/SiO2 interface in partially depleted SOI MOSFETs were investigated by direct-current current–voltage (DCIV) method before and after Fowler–Nordheim tunnelling stress condition. The equivalent density and energy level of interface trap were obtained by combining the DCIV measurement results with the theoretical calculation using the least square method. It is concluded that the interface trap density increased as applying F–N stress due to the generation of Si dangling bond and the trapped charge at the Si/SiO2 interface, and the equivalent energy level of interface trap become close to the midgap with stress time increasing. In addition, interface trap density NIT as a function of their energy level EIT can be achieved, which were typical “U-shape” curves, and the interface trap density near midgap increases obviously as the F–N stress time increasing. An effective method is proposed to evaluate the interface state of SOI devices suffered electrical stress or other damages.


  1. 1.
    B.B. Jie, C.-T. Sah, IEEE Int. Conf. Solid State Integr. Circuit Technol. 6, 1214–1219 (2006)Google Scholar
  2. 2.
    C.-T. Sah, B.B. Jie, IEEE Int. Conf. Solid State Integr. Circuit Technol. 6,1206–1213 (2006)Google Scholar
  3. 3.
    C. Hu, S.C. Tam, F.C. Hsu, P.K. Ko, T.Y. Chan, K.W. Terrill, IEEE Electron Device Lett. ED-32, 11 (1985)Google Scholar
  4. 4.
    H. Guan, B.J. Cho, M.F. Li, Z. Xu, Y.D. He, Z. Dong, IEEE Electron Device Lett. ED-48, 3 (2001)Google Scholar
  5. 5.
    É O’Connor, B. Brennan, V. Djara, K. Cherkaoui, S. Monaghan, S.B. Newcomb, R. Contreras, M. Milojevic, G. Hughes, M.E. Pemble, R.M. Wallace, P.K. Hurley, J. Appl. Phys. 109(2), 024101 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    E.J. Kim, L. Wang, P.M. Asbeck, K.C. Saraswat, P.C. McIntyre, Appl. Phys. Lett. 96(1), 012906 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    G. Groeseneken, H.E. Maes, N. Beltran, R.F.D. Keersmaecker, IEEE Trans. Electron Device. 31(1), 42–53 (1984)ADSCrossRefGoogle Scholar
  8. 8.
    W.L. Tseng, J. Appl. Phys. 62(2), 591–599 (1987)ADSCrossRefGoogle Scholar
  9. 9.
    N. Guenifi, A.D. Bauza, ECS Trans. 61(2), 8 (2014)CrossRefGoogle Scholar
  10. 10.
    T. Tsuchiya, Y. Ono, Jpn. J. Appl. Phys. 54(4S), 04DC01 (2015)CrossRefGoogle Scholar
  11. 11.
    B.B. Jie, M.F. Li, K.F. Lo, Proc. international symposium on the physical and failure analysis of integrated circuits (IPFA), Singapore (1999)Google Scholar
  12. 12.
    Y. Wang, C.-T. Sah, IEEE Int. Symp. VLSI Technol. 4, 29–32 (2001)Google Scholar
  13. 13.
    K.H. Ng, B.B. Jie, Y.D. He, W.K. Chim, M.F. Li, K.F. Lo, IEEE Proc. 7th IPFA. vol. 5, pp 140–144 (1999)Google Scholar
  14. 14.
    M. Inoue, J. Shirafuji, J. Appl. Phys. 80(11), 6315–6321 (1996)ADSCrossRefGoogle Scholar
  15. 15.
    P. Samanta, C.K. Sarkar, IEEE Int. Semicond. Conf. 1(1), 4 (1996)Google Scholar
  16. 16.
    G. Chen, B.B. Jie, M.F. Li, IEEE Int. Conf. Solid State Integr. Circuit Technol. 2, 4 (2001)Google Scholar
  17. 17.
    A. Neugroschel, G. Bersuker, IEEE Trans. Device Mater. Reliab. 5(1), 4 (2005)CrossRefGoogle Scholar
  18. 18.
    P. Samanta, J. Appl. Phys. 122(9), 094502 (2017)ADSCrossRefGoogle Scholar
  19. 19.
    J. Albohn, W. Füssel, N.D. Sinh, K. Kliefoth, W. Fuhs, J. Appl. Phys. 88(2), 842–849 (2000)ADSCrossRefGoogle Scholar
  20. 20.
    J.T. Kavalieros, C.T. Sah, IEEE Trans. Electron Device 43(1), 5 (1996)CrossRefGoogle Scholar
  21. 21.
    D. Vuillaume, R. Bouchakour, M. Jourdain, J.C. Bourgoin, Appl. Phys. Lett. 55(2), 153–155 (1989)ADSCrossRefGoogle Scholar
  22. 22.
    L. Wang, A. Neugroschel, Electron. Lett. 40(2), 148 (2004)CrossRefGoogle Scholar
  23. 23.
    E.H. Nicollian, A. Goetzberger, BELL Syst. Tech. J. LXLVI(6), 1055–1133 (1967)CrossRefGoogle Scholar
  24. 24.
    J. Cai, C.-T. Sah, IEEE Electron Device Lett. 20(1), 4 (1999)ADSGoogle Scholar
  25. 25.
    S.M. Sze, Phys. Semicond. Devices. 51(1), 38 (1981)ADSGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Xiaojing Li
    • 1
    • 2
    Email author
  • Chuanbin Zeng
    • 1
    • 2
  • Ruiheng Wang
    • 1
    • 2
  • Linchun Gao
    • 1
    • 2
  • Weiwei Yan
    • 1
    • 2
  • Jiajun Luo
    • 1
    • 2
  • Zhengsheng Han
    • 1
    • 2
    • 3
  1. 1.Institute of MicroelectronicsChinese Academy of SciencesBeijingChina
  2. 2.Key Laboratory of Silicon Device TechnologyChinese Academy of SciencesBeijingChina
  3. 3.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations