Applied Physics A

, 124:595 | Cite as

Hydrogen in optical germanium and reduction of its negative impact on the crystal properties by ultrasonic processing

  • G. S. Pekar
  • A. F. Singaevsky
  • M. M. Lokshin
  • A. A. Singaevsky


Hydrogen content and its effect on the properties of optical germanium has been first investigated. Large coarse-grained plates of Na-doped optical germanium, grown in an inert atmosphere, are shown to contain dissolved hydrogen in a concentration about 1.9 × 1017 cm− 3. It is shown that the presence of hydrogen can lead to the porosity of the plates, to the plate cracking and to the release of toxic gases during plate machining, as well as to some other negative effects. A technique for ultrasonic plate processing has been developed, which leads to a decrease in the hydrogen content by about 7 times, to an increase in the mechanical strength of the plates, to an increase in the material density, to a decrease in the Ge lattice parameter, and ultimately to eliminating all listed negative effects caused by the presence of hydrogen. The developed method of plate processing has found a successful application in the industrial production of protective screens for thermal imaging systems of night vision based on optical germanium plates.



This work was funded by the National Academy of Sciences as well as by the Ministry of Education and Science of Ukraine via the Project DZ/35-2017. The authors are very grateful to Academician M. Valakh and Academician Yu. Milman for valuable discussions, Prof. V. Strelchuk and Dr. A. Nikolenko for measuring the Raman spectra, Dr. P. Lytvin for atomic-force microscopic measurements, Dr. I. Goncharenko for measuring the fracture toughness.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    M. Hiller, E.V. Lavrov, J. Weber, B. Hourahine, R. Jones, P.R. Briddon, Phys. Rev. B 72, 153201–153201 (2005)ADSCrossRefGoogle Scholar
  2. 2.
    J. Weber, M. Hiller, E.V. Lavrov, Mater. Sci. Semicond. Process. 9, 564 (2006). ( Scholar
  3. 3.
    W.L. Hansen, E.E. Haller, P.N. Luke, IEEE Trans. Nucl. Sci. 29, 738 (1982). ( Scholar
  4. 4.
    V.P. Kalinushkin, V.V. Voronkov, G.I. Voronkova, V.N. Golovina, B.V. Zubov, T.M. Murina, A.M. Prokhorov, in Physical Processes in Laser-Materials Interactions, ed. by M. Bertolotti. Proc. of the 1980 NATO Advanced Study Institutes Series, (Springer Science & Business Media, Berlin, 2013), p. 405Google Scholar
  5. 5.
    I.A. Kaplunov, A.I. Kolesnikov, Surf. Investig. X-Ray Synchrotron Neutron Tech. 2, 14 (2002) (in Russian)Google Scholar
  6. 6.
    G.S. Pekar, A.F. Singaevsky, Appl. Phys. A 108, 657 (2012). ADSCrossRefGoogle Scholar
  7. 7.
    G.S. Pekar, A.F. Singaevsky, Patent of Ukraine for Invention No. 81729, 25.01.2008Google Scholar
  8. 8.
    G.S. Pekar, A.F. Singaevsky, Mater. Sci. Semicond. Process. 64, 10 (2017). CrossRefGoogle Scholar
  9. 9.
    K.A. Bolshakova. Chemistry and technology of rare and scattered elements (Vischaya shkola, Moscow, 1976) (in Russian)Google Scholar
  10. 10.
    N. Alba-Baena, D. Eskin, in Light Metals 2013, ed. by B. Sadler. TMS (The Minerals, Metals & Materials Society, Pittsburgh, 2013), p. 957Google Scholar
  11. 11.
    P. Röntgen, H. Winterhagen, Aluminium-Arch. 9, 6–17 (1938)Google Scholar
  12. 12.
    G.V. Raynor. The physical metallurgy of magnesium and its alloys (Pergamon Press, London, 1959)Google Scholar
  13. 13.
    S.S. Ostapenko, N.E. Korsunskaya, M.K. Sheinkman, Solid State Phenom. 65–86, 317 (2002)Google Scholar
  14. 14.
    I.V. Ostrovskii, L.P. Steblenko, A.B. Nadtochii, Semiconductors 34, 251 (2000) ADSCrossRefGoogle Scholar
  15. 15.
    S. Kh, Bagdasarov, High-temperature crystallization from melt (Fizmatlit, Moscow, 2004) (in Russian)Google Scholar
  16. 16.
    N.A. Goryunova, A.S. Borshcevsky, L.N. Tretiakov, Semiconductors and Semimetals, vol. 4, Physics of III–V Compounds (Academic Press, London, 1968),p. 510Google Scholar
  17. 17.
    M. Balshin, S. Kiparisov, Fundamentals of Powder Metallurgy (Metallurgy, Moscow, 1978), p. 184Google Scholar
  18. 18.
    G.S. Pekar, А.А. Singaevsky, А.F. Singaevsky, Semicond. Phys. Quantum Electr. Optoelectronics 19, 23 (2016). CrossRefGoogle Scholar
  19. 19.
    I.A. Kaplunov, Inorg. Mater. 42, 586 (2006)CrossRefGoogle Scholar
  20. 20.
    V.A. Volodin, M.D. Efremov, A.S. Deryabin, L.V. Sokolov, Semiconductors 40, 1314 (2006)ADSCrossRefGoogle Scholar
  21. 21.
    R.T. Payne, Phys. Rev. Lett. 13, 53 (1964)ADSCrossRefGoogle Scholar
  22. 22.
    N.V. Zavaritsky, Lett. JETP 12, 26 (1970)ADSGoogle Scholar
  23. 23.
    O.P. Matveeva, Dual Technol. 1 (50), 32 (2010) (in Russian)Google Scholar
  24. 24.
    A.G. Evans, E.A. Charles, J. Am. Cer. Soc. 59, 371 (1976)CrossRefGoogle Scholar
  25. 25.
    J. Salem, R. Rogers, E. Baker. NASA Technical Report, 2016. 2018-06-14TO8:12:14 + 00:00Z (2016)
  26. 26.
    W. Weibull, J. Appl. Mech. 18, 293 (1951)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • G. S. Pekar
    • 1
  • A. F. Singaevsky
    • 1
  • M. M. Lokshin
    • 1
  • A. A. Singaevsky
    • 1
  1. 1.V. Lashkaryov Institute of Semiconductor PhysicsNational Academy of Sciences of UkraineKievUkraine

Personalised recommendations