Applied Physics A

, 124:591 | Cite as

Temperature and frequency dependence of dielectric relaxation and AC electrical conductivity in p-Si/CuPc hybrid photodiode

  • M. M. ShehataEmail author
  • K. Abdelhady


Thermal evaporation technique has been used to fabricate a hybrid heterojunction Al/p-Si/CuPc/Au photodiode by deposition of a CuPc thin film onto a p-Si substrate. The dark IV curves exhibit diode-like behavior. The impedance characteristics of the Al/p-Si/CuPc/Au hybrid heterojunction were examined using complex impedance spectroscopy. In the investigated device, the activation energies have been obtained from Arrhenius plotting of two relaxation processes. The Cole–Cole plot and the electrical conductivity were reported and showed that the heterostructure possesses a negative temperature coefficient of resistance. The excess minority carrier lifetimes, the diffusion coefficients and the mobilities of charge carriers at two interfaces were calculated and interpreted. From the impedance spectra analysis, the band profile of the studied device can be fully determined.


  1. 1.
    B.A. Kolesov, T.V. Basova, I.K. Igumenov, Determination of the orientation of CuPc film by raman spectroscopy. Thin Solid Films 304(1–2), 166–169 (1997)ADSCrossRefGoogle Scholar
  2. 2.
    M. Hara, H. Sasabe, A. Yamada, A.F. Garito, Epitaxial growth of organic thin films by organic molecular beam epitaxy. Jpn. J. Appl. Phys. 28(2A), L306 (1989)ADSCrossRefGoogle Scholar
  3. 3.
    B. Tatar, D. Demiroğlu, M. Urgen, Structure and photovoltaic properties of Ag/p-CuPc/a-Si/c-Si/Ag organic–inorganic hybrid heterojunction fabricated by chemical spray pyrolysis technique. Microelectron. Eng. 108, 150–157 (2013)CrossRefGoogle Scholar
  4. 4.
    N. Kobayashi (1999). Phthalocyanines. Curr. Opin. Solid State Mater. Sci. 4(4), 345–353ADSCrossRefGoogle Scholar
  5. 5.
    C.W. Tang, Two-layer organic photovoltaic cell. Appl. Phys. Lett. 48(2), 183–185 (1986)ADSCrossRefGoogle Scholar
  6. 6.
    S. Ambily, C.S. Menon, The effect of growth parameters on the electrical, optical and structural properties of copper phthalocyanine thin films. Thin Solid Films 347(1), 284–288 (1999)ADSCrossRefGoogle Scholar
  7. 7.
    E. Itoh, Y. Ohmori, K. Miyairi, Photovoltaic properties of organic p–n junction devices consisting of phthalocyanine and n-type porphyrin deposited on an n-type TiO2 layer. Jpn. J. Appl. Phys. 43(2R), 817 (2004)ADSCrossRefGoogle Scholar
  8. 8.
    T. Yasuda, T. Tsutsui, Organic field-effect transistors based on high electron and ambipolar carrier transport properties of copper–phthalocyanine. Chem. Phys. Lett. 402(4), 395–398 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    H.N. Raval, D.S. Sutar, V.R. Rao, Copper(II) phthalocyanine based organic electronic devices for ionizing radiation dosimetry applications. Org. Electron. 14(5), 1281–1290 (2013)CrossRefGoogle Scholar
  10. 10.
    I.S. Yahia, S. AlFaify, M.M. Abutalib, S. Chusnutdinow, T. Wojtowicz, G. Karczewski et al., n-(CdMgTe/CdTe)/(p-(CdTe/ZnCdTe/ZnTe)/p-GaAs heterostructure diode for photosensor applications. Appl. Phys. A 122(5), 491 (2016)ADSCrossRefGoogle Scholar
  11. 11.
    I.S. Yahia, M. Fadel, G. Sakr, S. Shenouda, F. Yakuphanoglu, W. Farooq, Impedance spectroscopy of nanostructure p-ZnGa2Se4/n-Si heterojunction diode. Acta Phys. Pol. A 120(3), 563–566 (2011)CrossRefGoogle Scholar
  12. 12.
    T. Potlog, Impedance spectroscopy of ZnSe/ZnTe/CdTe thin film heterojunctions, in Semiconductor Conference (CAS), 2012 International, vol. 2. (IEEE, New York, 2012), pp. 261–264Google Scholar
  13. 13.
    S. Parola, B. Julián-López, L.D. Carlos, C. Sanchez, Optical properties of hybrid organic–inorganic materials and their applications. Adv. Funct. Mater. 26(36), 6506–6544 (2016)CrossRefGoogle Scholar
  14. 14.
    F. Yakuphanoglu, Electronic and photovoltaic properties of Al/p-Si/copper phthalocyanine photodiode junction barrier. Sol. Energy Mater. Sol. Cells 91(13), 1182–1186 (2007)CrossRefGoogle Scholar
  15. 15.
    J. Zhong, Y. Peng, T. Zheng, W. Lv, Q. Ren, F. Huang et al., High performance photodiode based on p-Si/copper phthalocyanine heterojunction. J. Nanosci. Nanotechnol. 16(6), 5782–5786 (2016)CrossRefGoogle Scholar
  16. 16.
    C. Park, H.W. Nam, A.A. Ovchinnikov, Y.W. Park, The IV characteristics of the gas phase doped copper phthalocyanine/Si heterojunctions. Synth. Met. 57(1), 4065–4070 (1993)CrossRefGoogle Scholar
  17. 17.
    M. Benhaliliba, Y.S. Ocak, C.E. Benouis, Effect of metal on characteristics of MPc organic diodes. J. Nano Electron. Phys. 6(4), 4009–4011 (2014)Google Scholar
  18. 18.
    P.S. Reddy, V. Janardhanam, I. Jyothi, C.S. Harsha, V.R. Reddy, S.N. Lee et al., Effect of copper phthalocyanine thickness on surface morphology, optical and electrical properties of Au/CuPc/n-Si heterojunction. Appl. Phys. A 124(2), 115 (2018)ADSCrossRefGoogle Scholar
  19. 19.
    A. Piegari, E. Masetti, Thin film thickness measurement: a comparison of various techniques. Thin Solid Films 124(3–4), 249–257 (1985)ADSCrossRefGoogle Scholar
  20. 20.
    M.M. Shehata, H. Kamal, K. Abdelhady, Photovoltaic performance, structural and electrical characterizations of thermally evaporated 5,10,15,20-tetra(4-pyridyl)-21H,23H-Prophine Zinc (ZnTPyP) organic thin films. Vacuum 154, 129–140 (2018)ADSCrossRefGoogle Scholar
  21. 21.
    S.S. Fouad, G.B. Sakr, I.S. Yahia, D.M. Abdel-Basset, F. Yakuphanoglu, Impedance spectroscopy of p-ZnGa2Te4/n-Si nano-HJD. Physica B 415, 82–91 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    M.M. Shehata, M.O. Abdel-Hamed, K. Abdelhady, Structural and dielectric properties of Au/perylene-66/p-Si/Al hybrid heterojunction diode. Vacuum 151, 96–107 (2018)ADSCrossRefGoogle Scholar
  23. 23.
    M.M. Shehata, T.G. Abdel-Malik, K. Abdelhady, AC impedance spectroscopy on Al/p-Si/ZnTPyP/Au heterojunction for hybrid solar cell applications. J. Alloy. Compd. 736, 225–235 (2018)CrossRefGoogle Scholar
  24. 24.
    V.V. Brus, On impedance spectroscopy analysis of nonideal heterojunctions. Semicond. Sci. Technol. 27(3), 035024 (2012)ADSCrossRefGoogle Scholar
  25. 25.
    V.V. Brus, A.K.K. Kyaw, P.D. Maryanchuk, J. Zhang, Quantifying interface states and bulk defects in high-efficiency solution-processed small-molecule solar cells by impedance and capacitance characteristics. Prog. Photovolt. Res. Appl. 23(11), 1526–1535 (2015)CrossRefGoogle Scholar
  26. 26.
    J.H. Ahn, J.U. Lee, T.W. Kim, Impedance characteristics of ITO/Alq3/Al organic light-emitting diodes depending on temperature. Curr. Appl. Phys. 7(5), 509–512 (2007)ADSCrossRefGoogle Scholar
  27. 27.
    S. Sahoo, U. Dash, S.K.S. Parashar, S.M. Ali, Frequency and temperature dependent electrical characteristics of CaTiO3 nano-ceramic prepared by high-energy ball milling. J. Adv. Ceram. 2(3), 291–300 (2013)CrossRefGoogle Scholar
  28. 28.
    J. Chen, D. Jin, J. Cheng, Impedance spectroscopy studies of 0.7Bi(Fe1−xGax)O3–0.3PbTiO3 high temperature piezoelectric ceramics. J. Alloy. Compd. 580, 67–71 (2013)CrossRefGoogle Scholar
  29. 29.
    A.S. Bondarenko, G.A. Ragoisha, in Progress in Chemometrics Research, ed. by A.L. Pomerantsev (Nova Science Publishers, New York, 2005), pp. 89–102 (the program is available online at )
  30. 30.
    M.S. Abouzari, F. Berkemeier, G. Schmitz, D. Wilmer, On the physical interpretation of constant phase elements. Solid State Ion. 180(14), 922–927 (2009)CrossRefGoogle Scholar
  31. 31.
    B.G. Streetman, S.K. Banerjee, Solid State Electronic Devices (Prentice-Hall, Upper Saddle River, 2005)Google Scholar
  32. 32.
    R.D. Gould, Dependence of the mobility and trap concentration in evaporated copper phthalocyanine thin films on background pressure and evaporation rate. J. Phys. D Appl. Phys. 19(9), 1785 (1986)ADSCrossRefGoogle Scholar
  33. 33.
    D. Wang, J. Zhu, L. Ding, P. Gao, X. Pan, J. Sheng, J. Ye, Interface electric properties of Si/organic hybrid solar cells using impedance spectroscopy analysis. Jpn. J. Appl. Phys. 55(5), 056601 (2016)ADSCrossRefGoogle Scholar
  34. 34.
    M. Dongol, M.M. El-Nahass, A. El-Denglawey, A.A. Abuelwafa, T. Soga, Alternating current characterization of nano-Pt (II) octaethylporphyrin (PtOEP) thin film as a new organic semiconductor. Chin. Phys. B 25(6) (2016)CrossRefGoogle Scholar
  35. 35.
    B. Barış, Frequency dependent dielectric properties in Schottky diodes based on rubrene organic semiconductor. Physica E 54, 171–176 (2013)ADSCrossRefGoogle Scholar
  36. 36.
    O. Dhibi, A. Ltaief, S. Zghal, A. Bouazizi, Temperature dependence of molecular dynamic arrangement in the vicinity of the glass transition of MEH-PPV: C60 based structures: X ray and impedance spectroscopy analysis. Vacuum 99, 80–88 (2014)ADSCrossRefGoogle Scholar
  37. 37.
    A. Kyritsis, P. Pissis, Dielectric studies of polymer–water interactions and water organization in PEO/water systems. J. Polym. Sci. Part B Polym. Phys. 35(10), 1545–1560 (1997)ADSCrossRefGoogle Scholar
  38. 38.
    A. Kyritsis, P. Pissis, J. Grammatikakis, Dielectric relaxation spectroscopy in poly(hydroxyethyl acrylates)/water hydrogels. J. Polym. Sci. Part B Polym. Phys. 33(12), 1737–1750 (1995)ADSCrossRefGoogle Scholar
  39. 39.
    A.M. Nawar, H.A. El-Khalek, M.M. El-Nahass, Dielectric and electric modulus studies on Ni(II) tetraphenyl porphyrin thin films. Org. OptoElect. 1(1), 25–38 (2015)Google Scholar
  40. 40.
    E. Ikada, H. Fukushima, T. Watanabe, Dielectric properties of oligomers. VII. Low-molecular-weight propylene glycols. J. Polym. Sci. Part B Polym. Phys. 17(10), 1789–1796 (1979)ADSCrossRefGoogle Scholar
  41. 41.
    M.M. El-Nahass, A.A. Attia, G.F. Salem, H.A.M. Ali, M.I. Ismail, Dielectric and impedance spectral characteristics of bulk ZnIn2Se4. Physica B 434, 89–94 (2014)ADSCrossRefGoogle Scholar
  42. 42.
    S.S. Fouad, A.E. Bekheet, A.M. Farid, Derivation of a relation between the conduction mechanism and chemical bonding of amorphous Ge15Se85−xAgx alloys. Physica B 322(1), 163–172 (2002)ADSCrossRefGoogle Scholar
  43. 43.
    M.M. El-Nahass, A.A.M. Farag, F.S.H. Abu-Samaha, E. Elesh, Temperature and frequency dependencies of AC and dielectric characterizations of copper tetraphenyl porphyrin thin films. Vacuum 99, 153–159 (2014)ADSCrossRefGoogle Scholar
  44. 44.
    V.P. Singh, B. Parsarathy, R.S. Singh, A. Aguilera, J. Anthony, M. Payne, Characterization of high-photovoltage CuPc-based solar cell structures. Sol. Energy Mater. Sol. Cells 90(6), 798–812 (2006)CrossRefGoogle Scholar
  45. 45.
    H.M. Zeyada, M.M. El-Nahass, M.M. El-Shabaan, Photovoltaic properties of the 4H-pyrano[3,2-c]quinoline derivatives and their applications in organic–inorganic photodiode fabrication. Synth. Met. 220, 102–113 (2016)CrossRefGoogle Scholar
  46. 46.
    G. Çankaya, N. Uçar, Schottky barrier height dependence on the metal work function for p-type Si Schottky diodes. Zeitschrift für Naturforschung A 59(11), 795–798 (2004)ADSCrossRefGoogle Scholar
  47. 47.
    A.S.A. Khiar, R. Puteh, A.K. Arof, Conductivity studies of a chitosan-based polymer electrolyte. Physica B 373(1), 23–27 (2006)ADSCrossRefGoogle Scholar
  48. 48.
    S.A. Yerişkin, M. Balbaşı, A. Tataroğlu, Frequency and voltage dependence of dielectric properties, complex electric modulus, and electrical conductivity in Au/7% graphene doped-PVA/n-Si (MPS) structures. J. Appl. Polym. Sci. 33(133) (2016)Google Scholar
  49. 49.
    S. Demirezen, A. Kaya, S.A. Yerişkin, M. Balbaşı, İ Uslu, Frequency and voltage dependent profile of dielectric properties, electric modulus and ac electrical conductivity in the PrBaCoO nanofiber capacitors. Results Phys. 6, 180–185 (2016)ADSCrossRefGoogle Scholar
  50. 50.
    Y.A. El-Gendy, I.S. Yahia, F. Yakuphanoglu, Investigation of nanocrystalline CdS/Si diode using complex impedance spectroscopy. Mater. Res. Bull. 47(11), 3397–3402 (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Physics Department, Faculty of ScienceMinia UniversityEl MinyaEgypt

Personalised recommendations