Advertisement

Applied Physics A

, 124:581 | Cite as

Tunable stripline circulator with isolation control using metamaterial cells

  • D. Bensafieddine
  • F. Djerfaf
  • F. Chouireb
  • D. Vincent
Article
  • 25 Downloads

Abstract

In this paper, a tunable stripline circulator with isolation control is designed using metamaterial cell. Our cells have two different configurations: the first one consists of the case 00 where each of the gaps g1 and g2 is closed. The second one represents the case 11 where the structure is in the open switch state (gaps g1 and g2 are open). We can flip between the desired behaviors by external commutation systems (using MEMS or PIN diode). Circulator’s frequency tunability is usually achieved by varying the static external magnetic bias. However, the isolation control arises by changing the states of the unit cell (11 or 00). The results show that it is possible to control the isolation characteristics of our circulator by operating the switching devices. The maximum isolation contrast between the cases 11 and 00 is 8.09 dB with a bandwidth of about 0.52 GHz for Hi = 1.1 kOe.

References

  1. 1.
    F.A. Ghaffar, J.R. Bray, Bray, A. Shamim, Theory and design of a tunable antenna on a partially magnetized ferrite LTCC substrate, IEEE Trans. (2014).  https://doi.org/10.1109/TAP.2013.2295833 Google Scholar
  2. 2.
    S. Yang, D. Vincent, J.R. Bray, L. Roy, Study of a ferrite LTCC multifunctional circulator with integrated winding, IEEE Trans. (2015).  https://doi.org/10.1109/TCPMT.2440660 Google Scholar
  3. 3.
    D. Segovia-Vargas, O. García-Pérez, V. González-Posadas, F. Aznar-Ballesta, Dual-band tunable recursive active filter. IEEE Microw. Wirel. Compon. Lett. 21, 92–94 (2011)CrossRefGoogle Scholar
  4. 4.
    D. Bensafeddine, F. Djerfaf, F. Chouireb, D. Vincent, Design of tunable microwave transmission lines using metamaterial cells. Appl. Phys. A 123, 248 (2017).  https://doi.org/10.1007/s00339-017-0869-6 ADSCrossRefGoogle Scholar
  5. 5.
    G. Kraftmakher, V. Butylkin, Y. Kazantsev, V. Mal’tsev, Microwave tunable and switchable planar non-reciprocal three-layer multiresonant wire–ferrite metastructure, IET Electron. Lett. 53(18) 831 (2017).  https://doi.org/10.1049/el.2017.1886 CrossRefGoogle Scholar
  6. 6.
    W.G. Lim, J.W. Yu, Balanced circulator structure with enhanced isolation characteristics, Microw. Opt. Technol. Lett. 50(9), 2389–2391 (2008)CrossRefGoogle Scholar
  7. 7.
    S.L. Karode, V.F. Fusco, Feedforward embedding circulator enhancement in transmit/receive applications. IEEE Microw. Wirel. Compon Lett 8, 33–34 (1998)Google Scholar
  8. 8.
    J.A. Weiss, G.F. Dionne, D.H. Temme, The ring-network circulator for integrated circuits: theory and experiments. IEEE Trans. Microw. Theory Tech. 43, 2743–2748 (1995)ADSCrossRefGoogle Scholar
  9. 9.
    G. Dewar, A thin wire array and magnetic host structure with n < 0. J. Appl. Phys. 97, 10Q101 (2005)CrossRefGoogle Scholar
  10. 10.
    P. He et al., Q-band tunable negative refractive index metamaterial using Scdoped BaM hexaferrite. J. Phys. D Appl. Phys. 42, 155005 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    B.-I. Popa, S.A. Cummer, Nonreciprocal active metamaterials. Phys. Rev. B 85, 205101 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    U.C. Hasar, J.J. Barroso, Retrieval approach for determination of forward and backward wave impedances of bi-anisotropic metamaterials. Prog. Electromagn. Res. 112, 109–124 (2011)CrossRefGoogle Scholar
  13. 13.
    D.M. Pozar, Microwave Engineering (Wiley, New York, 2005), pp. 144–146Google Scholar
  14. 14.
    J.J. Barroso, U.C. Hasar, Resolving phase ambiguity in the inverse problem of transmission/reflection measurement methods. Int. J. Infrared Milli Waves 32, 857–866 (2011)CrossRefGoogle Scholar
  15. 15.
    N. Mattiucci, G. D’Aguanno, N. Akozbek, M. Scalora, M.J. Blomer, Homogenization procedure for a metamaterial and local violation of the second principle of thermodynamics. Opt. Commun. 283, 1613–1620 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    H. Bosma, On the principle of stripline circulation. IEE Part B Electron. Commun. Eng. 109(21), 137–146 (1962)CrossRefGoogle Scholar
  17. 17.
    C.E. Fay, R.L. Comstock, Operation of the ferrite junction circulator. IEEE Trans. MTT-13, 15–27 (1965)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Semiconductors and Functional Materials LaboratoryLaghouatAlgeria
  2. 2.Telecommunications, Signal and Systems LaboratoryLaghouatAlgeria
  3. 3.Hubert Curien LaboratoryLyonFrance

Personalised recommendations