Advertisement

Applied Physics A

, 124:576 | Cite as

Temperature-dependent properties of electrochemically grown CdS thin films from acetate precursor

  • S. Z. Werta
  • O. K. Echendu
  • F. B. Dejene
  • Z. N. Urgessa
  • J. R. Botha
Article

Abstract

Cadmium sulphide (CdS) thin films have been successfully deposited on glass/fluorine-doped tin oxide (glass/FTO) from an aqueous electrolyte solution containing cadmium acetate Cd(CH3COO)2 and sodium thiosulphate (Na2S2O3) using electrodeposition technique. The deposition electrolytic bath temperature was varied at 45, 65 and 85 °C. Two electrode system was applied and the corresponding structural, optical, morphological and compositional properties of these thin films have been characterized using X-ray diffraction, UV–Vis spectrophotometry, scanning electron spectroscopy, scanning probe microscopy and energy dispersive X-ray spectroscopy, respectively. The effect of post growth annealing on the structural, optical and morphological quality of the thin films is also reported. The results show that, growth temperature has significant influence on structural and optical properties of the film properties. Increasing the electrolytic solution temperature resulted in slight improvement in crystallinity of CdS thin films in both as deposited and annealed conditions. Due to increase in bath temperature from 45 to 85 °C the energy band gap narrows down from 2.45 to 2.38 eV for as deposited films and 2.42–2.22 eV for annealed films. The increase in deposition temperature improves the atomic ratio of Cd to S. Similarly, the grain sizes of the films increase with increase in growth temperature.

Notes

Acknowledgements

The authors would like to thank the University of the Free State, Research Directorate and the National Research Foundation, South Africa for funding the research that led to this paper.

Compliance with ethical standards

Conflict of interest

Authors declare no conflict of interest.

References

  1. 1.
    A.G. Stanley, Massachusetts inst of tech Lexington Lincoln lab, (1967)Google Scholar
  2. 2.
    F.A. Shirland, Adv. Energy Convers. 6, 201–221 (1966)CrossRefGoogle Scholar
  3. 3.
    R.R. Arya, T. Warminski, R. Beaulieu, M. Kwietniak, J.J. Loferski, W. Giriat, Sol. Energy Mater. 8, 471–481 (1983)ADSCrossRefGoogle Scholar
  4. 4.
    S. Dennison, Electrochimica Acta 38, 2395–2403 (1993)CrossRefGoogle Scholar
  5. 5.
    A. Ashour, N. El-Kadry, S.A. Mahmoud, Thin Solid Films 269, 117–120 (1995)ADSCrossRefGoogle Scholar
  6. 6.
    R. Zhou, Q. Zhang, J. Tian, D. Myers, M. Yin, G. Cao, J. Phys. Chem. C 117, 26948–26956 (2013)CrossRefGoogle Scholar
  7. 7.
    O.K. Echendu, F.B. Dejene, I.M. Dharmadasa, J. Mater. Sci. Mater. Electron. 28, 18865–18872 (2017)CrossRefGoogle Scholar
  8. 8.
    O.K. Echendu, I.M. Dharmadasa, Mater. Chem. Phys. 157, 39–44 (2015)CrossRefGoogle Scholar
  9. 9.
    L.L. Kazmerski, F.R. White, G.K. Morgan, Appl. Phys. Lett. 29, 268–270 (1976)ADSCrossRefGoogle Scholar
  10. 10.
    I. Repins, M.A. Contreras, B. Egaas, C. DeHart, J. Scharf, C.L. Perkins, B. To, R. Noufi, Prog. Photovolt. Res. Appl. 16, 235–239 (2008)CrossRefGoogle Scholar
  11. 11.
    X. Wang, S.S. Li, C.H. Huang, S. Rawal, J.M. Howard, V. Craciun, T.J. Anderson, O.D. Crisalle, Sol. Energy Mater. Sol. Cells 88, 65–73 (2005)CrossRefGoogle Scholar
  12. 12.
    X. Wang, S.S. Li, W.K. Kim, S. Yoon, V. Craciun, J.M. Howard, S. Easwaran, O. Manasreh, O.D. Crisalle, T.J. Anderson, Sol. Energy Mater. Sol. Cells 90, 2855–2866 (2006)CrossRefGoogle Scholar
  13. 13.
    F. Liu, Y. Lai, J. Liu, B. Wang, S. Kuang, Z. Zhang, J. Li, Y. Liu, J. Alloys Compd. 436, 305 (2010)CrossRefGoogle Scholar
  14. 14.
    W.G.C. Kumarage, V.A. L.B.D.R.P Wijesundara, C.P. Seneviratne, B.S. Jayalath, Dassanayake, Procedia Eng. 139, 64 (2016)CrossRefGoogle Scholar
  15. 15.
    O.K. Echendu, U.S. Mbamara, K.B. Okeoma, C. Iroegbu, C.A. Madu, I.C. Ndukwe, I.M. Dharmadasa, J. Mater. Sci. Mater. Electron. 27, 10182 (2016)CrossRefGoogle Scholar
  16. 16.
    N.A. Abdul-Manaf, A.R. Weerasinghe, O.K. Echendu, I.M. Dharmadasa, J. Mater. Sci. Mater. Electron. 26, 2429 (2015)CrossRefGoogle Scholar
  17. 17.
    P. Boieriu, R. Sporken, A. Adriaens, Y. Xin, N.D. Browning, S. Sivananthan, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 161–163, 975 (2000)ADSCrossRefGoogle Scholar
  18. 18.
    E.W. Jones, V. Barrioz, S.J.C. Irvine, D. Lamb, Thin Solid Films 517, 2226 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    V. Krishnakumar, K. Ramamurthi, A. Klein, W. Jaegermann, Thin Solid Films 517, 2558 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    M. Saglam, A. Ates, B. Guzeldir, A. Astam, M.A. Yildirim, J. Alloys Compd. 484, 570 (2009)CrossRefGoogle Scholar
  21. 21.
    P.J. Sebastian, M.E. Calixto, Porous, Thin Solid Films 360, 128–132 (2002)CrossRefGoogle Scholar
  22. 22.
    A.A. Ziabari, F.E. Ghodsi, Growth, Sol. Energy Mater. Sol. Cells 105, 249–262 (2012)CrossRefGoogle Scholar
  23. 23.
    S. Bonilla, E.A. Dalchiele, Thin Solid Films 204, 397 (1991)ADSCrossRefGoogle Scholar
  24. 24.
    B. Ullrich, H. Sakai, Y. Segawa, Appl. Phys. Lett. 80, 356–358 (2002)ADSCrossRefGoogle Scholar
  25. 25.
    M. Rusu, T. Glatzel, A. Neisser, C.A. Kaufmann, S. Sadewasser, M.C. Lux-, Steiner, Appl. Phys. Lett. 88, 143510 (2006)ADSCrossRefGoogle Scholar
  26. 26.
    I.M. Dharmadasa, O.K. Echendu, Encycl. Appl. Electrochem. (2012) 680–691Google Scholar
  27. 27.
    J. Nishino, S. Chatani, Y. Uotani, Y. Nosaka, J. Electroanal. Chem. 473, 217–222 (1999)CrossRefGoogle Scholar
  28. 28.
    G. Mustafa, M.R.I. Chowdhury, D.K. Saha, S. Hussain, O. Islam, Dhaka Univ. J. Sci. 60, 283 (2012)CrossRefGoogle Scholar
  29. 29.
    V. Singh, P. Chauhan, J. Phys. Chem. 70, 1074–1079 (2009)Google Scholar
  30. 30.
    K.G. Rao, V.K. Ashith, J. Phys. Chem. 77, 14–22 (2015)Google Scholar
  31. 31.
    O. Zelaya-Angel1, R. Lozada-Morales, Phys. Rev. B 62, 13064 (2000)ADSCrossRefGoogle Scholar
  32. 32.
    L. Wenyi, C. Xun, C. Qiulong, Z. Zhibin, Mater. Lett. 59, 1–5 (2005)CrossRefGoogle Scholar
  33. 33.
    F. Liu, Y. Lai, J. Liu, B. Wang, S. Kuang, Z. Zhang, J. Li, Y. Liu, J. Alloys Compd. 493, 305–308 (2010)CrossRefGoogle Scholar
  34. 34.
    A. Mukherjee, B. Satpati, S.R. Bhattacharyya, R. Ghosh, P. Mitra, Phys. E 65, 51–55 (2015)CrossRefGoogle Scholar
  35. 35.
    M.J. Kim, H.T. Kim, J.K. Kang, D.H. Kim, D.H. Lee, S.H. Lee, S.H. Sohn, Mol. Cryst. Liq. Cryst. 532, 21 (2010)Google Scholar
  36. 36.
    R.R.L. De Oliveira, D.A.C. Albuquerque, T.G.S. Cruz, F.M. Yamaji, F.L. Leite, http://www.intechopen.com. InTech (2012)
  37. 37.
    J. Aguilar-Hernandez, J. Saatre-Hernandez, N. Ximello-Quiebras, R. Mendoza-, O. Perez, G. Vigil-Galan, Contreras-Garcia, Thin Solid Films 143, 511–512 (2006)Google Scholar
  38. 38.
    K. Ravichandran, P. Philominathan, Appl. Surf. Sci. 255, 5736–5741 (2009)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • S. Z. Werta
    • 1
  • O. K. Echendu
    • 1
  • F. B. Dejene
    • 1
  • Z. N. Urgessa
    • 2
  • J. R. Botha
    • 2
  1. 1.Department of PhysicsUniversity of the Free State Qwa Qwa CampusPhuthaditjhabaSouth Africa
  2. 2.Department of PhysicsNelson Mandela UniversityPort ElizabethSouth Africa

Personalised recommendations