Applied Physics A

, 124:602 | Cite as

Flexible organic heterostructures obtained by MAPLE

  • M. SocolEmail author
  • N. Preda
  • C. Breazu
  • A. Stanculescu
  • A. Costas
  • F. Stanculescu
  • M. Girtan
  • F. Gherendi
  • G. Popescu-Pelin
  • G. Socol


Organic heterostructures based on zinc phthalocyanine (ZnPc) and perylene tetracarboxylic dianhydride (PTCDA) were deposited by matrix-assisted pulsed laser evaporation (MAPLE) technique on conductive flexible substrate (ITO/PET) in three configurations: ZnPc/PTCDA (stacked layers), ZnPc:PTCDA (blend) and ZnPc/ZnPc:PTCDA/PTCDA. The effect of the configuration on the optical and electrical properties of the obtained heterostructures was investigated. For all heterostructures was observed an improved optical absorption in visible domain. The IV characteristics recorded under illumination, revealed higher short circuit current (ISC) values for the ZnPc:PTCDA and ZnPc/ZnPc:PTCDA/PTCDA structures in comparison with that of the ZnPc/PTCDA structure. The results proved that by MAPLE can be obtained flexible organic heterostructures (in different configurations) with properties adequate for applications in flexible electronics and solar cell fields.



This research was financially supported by the Romanian Ministry of Research and Innovation through National Core Program from PN18-110201 and LAPLAS V (3N/2018) contracts.


  1. 1.
    Y. Karzazi, J. Mater. Environ. Sci. 5, 1 (2014)Google Scholar
  2. 2.
    A. Stanculescu, M. Socol, G. Socol, I.N. Mihailescu, M. Girtan, N. Preda, A.-M. Albu, F. Stanculescu, Thin Solid Films 520, 1251 (2011)ADSCrossRefGoogle Scholar
  3. 3.
    Y.-S. Park, J. Berger, Z. Tang, L. Müller-Meskamp, A.F. Lasagni, K. Vandewal, K. Leo, Appl. Phys. Lett. 109, 093301 (2016)ADSCrossRefGoogle Scholar
  4. 4.
    Y.J. Wang, J.G. Lu, H.P.D. Shieh, IEEE Photon. J. 8, 1600108 (2016)Google Scholar
  5. 5.
    S. Antohe, S. Iftimie, L. Hrostea, V.A. Antohe, M. Girtan, Thin Solid Films 642, 219 (2017)ADSCrossRefGoogle Scholar
  6. 6.
    Y. Gao, F. Jin, W. Li, Z. Su, B. Chu, J. Wang, H. Zhao, H. Wu, C. Liu, F. Hou, T. Lin, Q. Song, Sci. Rep. 6, 23916 (2016)ADSCrossRefGoogle Scholar
  7. 7.
    A. Lv, Y. Pan, L. Chi, Sensors 17, 213 (2017)CrossRefGoogle Scholar
  8. 8.
    D. Elkington, N. Cooling, W. Belcher, P.C. Dastoor, X.-J. Zhou, Electronics 3, 234 (2014)CrossRefGoogle Scholar
  9. 9.
    R.A. Ugarte, N. Rady, S. Venkatesan, T.W. Hudnall, A. Zakhidov, Org. Electron. 44, 126 (2017)CrossRefGoogle Scholar
  10. 10.
    Y. Im, S.Y. Byun, J.H. Kim, D.R. Lee, C.S. Oh, K.S. Yook, J.Y. Lee, Adv. Funct. Mater. 27, 1603007 (2016)CrossRefGoogle Scholar
  11. 11.
    C.W. Tang, Appl. Phys. Lett. 48, 183 (1986)ADSCrossRefGoogle Scholar
  12. 12.
    C.J. Brabec, N.S. Sariciftci, Appl. Phys. Lett. 78, 841 (2001)ADSCrossRefGoogle Scholar
  13. 13.
    C. Zhang, Y. Hu, A. Tang, Z. Deng, F. Teng, J. Appl. Polym. Sci. 132, 41757 (2015)Google Scholar
  14. 14.
    G.A. Nemnes, S. Iftimie, A. Palici, A. Nicolaev, T.L. Mitran, A. Radu, S. Antohe, Appl. Surf. Sci. 424, 264 (2017)ADSCrossRefGoogle Scholar
  15. 15.
    Y.-S. Liu, X.-G. Wan, F. Wang, J.-Y. Zhou, G. Long, J.-G. Tian, J. You, Y. Yang, Y.-S. Chen, Adv. Energy Mater. 1, 771 (2011)CrossRefGoogle Scholar
  16. 16.
    S. Sankaran, K. Glaser, S. Gärtner, T. Rödlmeier, K. Sudau, G. Hernandez-Sosa, A. Colsmann, Org. Electron. 28, 118 (2016)CrossRefGoogle Scholar
  17. 17.
    A.P. Caricato et al., Appl. Phys. Lett. 100, 073306 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    C.-F. Lin, M. Zhang, S.-W. Liu, T.-L. Chiuand, J.-H. Lee, Int. J. Mol. Sci. 12, 476 (2011)CrossRefGoogle Scholar
  19. 19.
    K. Yoshida, T. Oku, A. Suzuki, T. Akiyama, Y. Yamasaki, Adv. Chem. Eng. Sci. 2, 461 (2012)CrossRefGoogle Scholar
  20. 20.
    L. Baschir, S. Antohe, A. Radu, R. Constantineanu, S. Iftimie, M. Popescu, I.D. Simandan, Dig. J. Nanomater. Biostruct. 8, 1645 (2013)Google Scholar
  21. 21.
    H. Huang, S. Chen, X. Gao, W. Chen, A.T. Wee, ACS Nano 3, 3431 (2009)CrossRefGoogle Scholar
  22. 22.
    F. Sanculescu, A. Stanculescu, M. Socol, J. Optoelectron. Adv. Mater. 9, 1352 (2007)Google Scholar
  23. 23.
    A. Stanculescu, M. Socol, G. Socol, I.N. Mihailescu, F. Stanculescu, M. Girtan, Appl. Phys. A 104, 921 (2011)ADSCrossRefGoogle Scholar
  24. 24.
    S. Iftimie, R. Mallet, J. Merigeon, L. Ion, M. Girtan, S. Antohe, Dig. J. Nanomater. Biostruct. 10, 221 (2015)Google Scholar
  25. 25.
    A. Stanculescu, O. Rasoga, N. Preda, M. Socol, F. Stanculescu, I. Ionita, A.-M. Albu, G. Socol, Ferroelectrics 389, 159 (2009)CrossRefGoogle Scholar
  26. 26.
    L. Cao, Y.-Z. Wang, D.-C. Qi, J.-Q. Zhong, A.T.S. Wee, X.-Y. Gao, J. Phys. Chem. C 117, 25636 (2013)CrossRefGoogle Scholar
  27. 27.
    L. Gaffo, M.R. Cordeiro, A.R. Freitas, W.C. Moreira, E.M. Girotto, V. Zucolotto, J. Mater. Sci. 45, 1366 (2010)ADSCrossRefGoogle Scholar
  28. 28.
    R. Seoudi, G.S. El-Bahy, Z.A. El Sayed, J. Mol. Struct. 753, 119 (2005)ADSCrossRefGoogle Scholar
  29. 29.
    M. Pandey, G.M. Joshi, K. Deshmukh, N.N. Ghosh, N.A.N. Raj, J. Phys. Chem. Solids 80, 52 (2015)ADSCrossRefGoogle Scholar
  30. 30.
    Y. Sakurai, Y. Hosoi, H. Ishii, Y. Ouchi, J. Appl. Phys. 96, 5534 (2004)ADSCrossRefGoogle Scholar
  31. 31.
    E. Leveugle, L.V. Zhigilei, A. Sellinger, J.M. Fitz-Gerald, J. Phys. Conf. Ser. 59, 126 (2007)ADSCrossRefGoogle Scholar
  32. 32.
    N. Mozhzhukhina, L.P. Méndez, De Leo, E.J. Calvo, J. Phys. Chem. C 117, 18375 (2013)CrossRefGoogle Scholar
  33. 33.
    S. Senthilarasu, Y.B. Hahn, S.H. Lee, J. Appl. Phys. 102, 043512 (2007)ADSCrossRefGoogle Scholar
  34. 34.
    D.E. Motaung, G.F. Malgas, C.J. Arendse, Synth. Met. 160, 876 (2010)CrossRefGoogle Scholar
  35. 35.
    G.M. Kumar, S. Chidambaram, J.K. Park, Jinsub, R. Jayavel, Hybrid nanostructures for photovoltaics, in Nanostructure, nanosystems, and nanostructured materials, 1st edn. ed. by A.K. By, V.I. Haghi, G.E. Kodolov, P. Zaikov, M. Sivakumar (Apple Academic Press, Boca Raton, 2013), p 462Google Scholar
  36. 36.
    A. Stanculescu, F. Stanculescu, L. Tugulea, M. Socol, Mater. Sci. Forum 514–516, 956 (2006)CrossRefGoogle Scholar
  37. 37.
    J. Zou, K. Zhang, J. Li, Y. Zhao, Y. Wang, S. Kumar, R. Pillai, H.V. Demir, X. Sun, M.B. Chan-Park, Q. Zhang, Sci. Rep. 5, 11755 (2015)ADSCrossRefGoogle Scholar
  38. 38.
    F.T. Reis, D. Mencaraglia, S.O. Saad, I. Séguy, M. Oukachmih, P. Jolinat, P. Destruel, Synth. Met. 138, 33 (2003)CrossRefGoogle Scholar
  39. 39.
    M. Saleheen, S.M. Arnab, M.Z. Kabir, Energies 9, 412 (2016)CrossRefGoogle Scholar
  40. 40.
    G. Weihao, An overview on P3HT:PCBM, the most efficient organic solar cell material so far. Solid State Phys. 1, 1–11 (2009)Google Scholar
  41. 41.
    H. Hoppe, N.S. Sariciftci, J. Mater. Res. 19, 1924 (2004)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • M. Socol
    • 1
    Email author
  • N. Preda
    • 1
  • C. Breazu
    • 1
  • A. Stanculescu
    • 1
  • A. Costas
    • 1
  • F. Stanculescu
    • 2
  • M. Girtan
    • 3
  • F. Gherendi
    • 4
  • G. Popescu-Pelin
    • 4
  • G. Socol
    • 4
  1. 1.National Institute of Materials PhysicsMagureleRomania
  2. 2.Faculty of PhysicsUniversity of BucharestBucharest-MagureleRomania
  3. 3.Laboratoire de Photonique d’AngersUniversité d’AngersAngersFrance
  4. 4.National Institute for Lasers, Plasma and Radiation PhysicsMagureleRomania

Personalised recommendations