Applied Physics A

, 124:537 | Cite as

Study of photovoltaic performance of Sb2S3/CdS quantum dot co-sensitized solar cells fabricated using iodine-based gel polymer electrolytes

  • Yufang Liang
  • Xiangli ZhongEmail author
  • Hongjia Song
  • Yuan Zhang
  • Dongguo Zhang
  • Yang Zhang
  • Jinbin WangEmail author


In this study, cadmium sulfide (CdS) and antimony sulfide (Sb2S3) quantum dot (QD) co-sensitized solar cells were fabricated using iodine-based gel polymer electrolytes. It was noticed that in comparison with TiO2/Sb2S3 QDs, the short-circuit current (Jsc) and the photoconversion efficiency (η) of the fabricated photovoltaic device based on TiO2/CdS/Sb2S3 QDs increased from 5.61 to 8.35 mA/cm2 and 1.06–1.61%, respectively. The presence of a CdS buffer layer between TiO2 and Sb2S3 was attributed to the enhancement of Jsc and η. The CdS buffer layer promoted the growth of Sb2S3 and facilitated the transfer of electrons from Sb2S3 to TiO2 through the reorganization of band levels between CdS and Sb2S3. It was also observed that the polymer electrolytes effectively prevented the corrosion of Sb2S3 QDs. Therefore, it can be concluded that the outcomes of this research could expedite future work on novel Sb2S3 quantum dot sensitized solar cells (QDSCs) based on polymer electrolytes with improved performance.



This work was financially supported by the National Natural Science Foundation of China [51572233 and 61574121] and the National Key Research and Development Program of China [2016YFB0501303].


  1. 1.
    I.A. Ovid’ko, A.G. Sheinerman, Phys. Rev. B 66, 245309 (2002)ADSCrossRefGoogle Scholar
  2. 2.
    W.W. Yu, L. Qu, W. Guo, X. Peng, Chem. Mater. 15, 2854–2860 (2003)CrossRefGoogle Scholar
  3. 3.
    R. Vadapoo, S. Krishnan, H. Yilmaz, C. Marin, Nanotechnol. 22, 175705 (2011)ADSCrossRefGoogle Scholar
  4. 4.
    V. Malgras, S. Tominaka, J.W. Ryan, J. Am. Chem. Soc. 138, 13874–13881 (2016)CrossRefGoogle Scholar
  5. 5.
    M.C. Hanna, A.J. Nozik, J. Appl. Phys. 100, 074510 (2006)ADSCrossRefGoogle Scholar
  6. 6.
    J. Kim, H. Choi, C. Nahm, J. Moon, C. Kim, S. Nam, D.R. Jung, B. Park, J Power Sources 196, 10526–10531 (2011)CrossRefGoogle Scholar
  7. 7.
    M.Y. Versavel, J.A. Haber, Thin Solid Films 515, 7171–7176 (2007)ADSCrossRefGoogle Scholar
  8. 8.
    V. Malgras, A. Nattestad, J.H. Kim, Sci. Technol. Adv. Mat. 18, 334–350 (2017)CrossRefGoogle Scholar
  9. 9.
    J. George, M.K. Radhakrishnan, Solid State Commun. 33, 987–989 (1980)ADSCrossRefGoogle Scholar
  10. 10.
    O. Savadogo, K.C. Mandal, Sol Energy Mater Sol Cells. 26, 117–136 (1992)CrossRefGoogle Scholar
  11. 11.
    J.A. Christians, P.V. Kamat, ACS Nano. 7, 7967–7974 (2013)CrossRefGoogle Scholar
  12. 12.
    V. Malgras, J. Henzie, T. Takei, Chem. Commun. 53, 2359–2362 (2017)CrossRefGoogle Scholar
  13. 13.
    J. Du, Z. Du, J.S. Hu, Z. Pan, Q. Shen, J. Sun, D. Long, H. Dong, L. Sun, X. Zhong, J. Am. Chem. Soc. 138, 4201–4209 (2016)CrossRefGoogle Scholar
  14. 14.
    Y. Itzhaik, O. Niitsoo, M. Page, G. Hodes, J. Phys. Chem. C 113, 4254–4256 (2009)CrossRefGoogle Scholar
  15. 15.
    Z. Yu, S. Sandhu, S. Fan, Nano Lett. 14, 66–70 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    Y.C. Choi, D.U. Lee, J.H. Noh, E.K. Kim, S.I. Seok, Adv. Funct. Mater. 24, 3587–3592 (2014)CrossRefGoogle Scholar
  17. 17.
    S. Dou, L. Yan, H. Wang, J. Liu, J. Mater. Sci. Mater. Electron. 26, 5767–5773 (2015)CrossRefGoogle Scholar
  18. 18.
    C.S. Lim, S.H. Im, J.H. Rhee, Y.H. Lee, H.J. Kim, N. Maiti, Y. Kang, J.A. Chang, M.K. Nazeeruddin, M. Grätzel, S.I. Seok, J. Mater. Chem. 22, 1107–1111 (2012)CrossRefGoogle Scholar
  19. 19.
    W. Li, J. Yang, Q. Jiang, Y. Luo, Y. Hou, S. Zhou, Y. Xiao, L. Fu, Z. Zhou, J. Power Sources. 307, 690–696 (2016)ADSCrossRefGoogle Scholar
  20. 20.
    S. Tan, J. Zhai, M. Wan, Q. Meng, Y. Li, L. Jiang, D. Zhu, J. Phys. Chem. B 108, 18693–18697 (2004)CrossRefGoogle Scholar
  21. 21.
    J. Wu, Z. Lan, J. Lin, M. Huang, S. Hao, L. Fang, Electrochim. Acta 52, 7128–7135 (2007)CrossRefGoogle Scholar
  22. 22.
    Z. Yuxiang, H. Zhipeng, Z. Changneng, D. Songyuan, Acta Chim. Sinica 67, 2253–2257 (2009)Google Scholar
  23. 23.
    R. Senthil, J. Theerthagiri, J. Madhavan, J. Phys. Chem. Solids 89, 78–83 (2016)ADSCrossRefGoogle Scholar
  24. 24.
    D. Arunbabu, A. Sannigrahi, T. Jana, J. Phys. Chem. B 112, 5305–5310 (2008)CrossRefGoogle Scholar
  25. 25.
    Y. Yang, J. Zhang, C. Zhou, S. Wu, S. Xu, W. Liu, H. Han, B. Chen, X.Z. Zhao, J. Phys. Chem. B 112, 6594–6602 (2008)CrossRefGoogle Scholar
  26. 26.
    S. Ganesan, B. Muthuraaman, V. Mathew, M.K. Vadivel, P. Maruthamuthu, M. Ashokkumar, S.A. Suthanthiraraj, Electrochim. Acta 56, 8811–8817 (2011)CrossRefGoogle Scholar
  27. 27.
    S. Ganesan, P. Karthika, R. Rajarathinam, M. Arthanareeswarar, V. Mathew, P. Maruthamuthu, Sola Energy 135, 84–91 (2016)ADSCrossRefGoogle Scholar
  28. 28.
    A. Ruland, C. Schulz-Drost, V. Sgobba, D.M. Guldi, Adv Mater. 23, 4573–4577 (2011)CrossRefGoogle Scholar
  29. 29.
    P. Lv, W. Fu, H. Yang, H. Sun, Y. Chen, J. Ma, X. Zhou, L. Tian, W. Zhang, M. Li, H. Yao, D. Wu, CrystEngComm. 15, 7548 (2013)CrossRefGoogle Scholar
  30. 30.
    R. Ahmed, L. Zhao, A.J. Mozer, G. Will, J. Bell, H. Wang, J. Phys.Chem. C 119, 2297–2307 (2015)Google Scholar
  31. 31.
    C.F. Chi, H.W. Cho, H. Teng, C.Y. Chuang, Y.M. Chang, Y.J. Hsu, Y.L. Lee, Appl. Phys. Lett. 98, 012101 (2011)ADSCrossRefGoogle Scholar
  32. 32.
    M.A. Abbas, M.A. Basit, T.J. Park, J.H. Bang, Phys. Chem. Chem. Phys. 17, 9752–9760 (2015)CrossRefGoogle Scholar
  33. 33.
    D. Esparza, I. Zarazúa, T. López-Luke, R. Carriles, A. Torres-Castro, E.D.L. Rosa Electrochim. Acta 180, 486–492 (2015)CrossRefGoogle Scholar
  34. 34.
    H.J. Kim, H.D. Lee, C.S.S.P. Kumar, S.S. Rao, S.H. Chung, D. Punnoose, New J. Chem. 39, 4805–4813 (2015)CrossRefGoogle Scholar
  35. 35.
    A.V. Kozytskiy, O.L. Stroyuk, M.A. Skoryk, V.M. Dzhagan, S.Y. Kuchmiy, D.R. Zahn, J. Photoch. Photobio. A. 303–304, 8–16 (2015)CrossRefGoogle Scholar
  36. 36.
    Y. Chen, Q. Tao, W. Fu, H. Yang, Electrochim. Acta 173, 812–818 (2015)CrossRefGoogle Scholar
  37. 37.
    J. Van de Lagemaat, N.-G. Park, A. Frank, J. Phys. Chem. B. 104, 2044–2052 (2000)CrossRefGoogle Scholar
  38. 38.
    B. Zhang, J. Zheng, X. Li, Y. Fang, L.W. Wang, Y. Lin, F. Pan, Chem. Commun. 52, 5706–5709 (2016)CrossRefGoogle Scholar
  39. 39.
    N. Guangda, L. Wenzhe, L. Jiangwei, W. Liduo, Sci. China Mater. 59, 728–742 (2016)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yufang Liang
    • 1
    • 2
  • Xiangli Zhong
    • 1
    • 2
    Email author
  • Hongjia Song
    • 1
    • 2
  • Yuan Zhang
    • 1
    • 2
  • Dongguo Zhang
    • 1
    • 2
  • Yang Zhang
    • 1
    • 2
  • Jinbin Wang
    • 1
    • 2
    Email author
  1. 1.School of Materials Science and EngineeringXiangtan UniversityXiangtanChina
  2. 2.Key Laboratory of Low-dimensional Materials and Application TechnologyXiangtan UniversityXiangtanChina

Personalised recommendations