Applied Physics A

, 124:531 | Cite as

The adhesion, stability, and electronic structure of γ-TiAl/VN interface: a first-principle study

  • Xuyang LiuEmail author
  • Hongbiao Dong
  • Xuewei Lv
  • Chenguang Bai
  • Ning Hu
  • Liangying Wen
  • Zhongqing Yang


The adhesion, stability, atomic bonding and electronic structure of γ-TiAl (110)/VN (100) interface were studied by first-principle calculation. Five interface structures with different atom stacking sequences (top- and bridge-) were considered to examine the bonding nature. Results indicated that the preferred interfacial structure is that Al atom locates above the ceramic’s metalloid atom, which has the largest ideal work of adhesion and the smallest interfacial energy. The top-site interface, where Al atom locates above the ceramic’s metalloid atom, is characterized by a strong Al–N polar covalent bond, whereas the other top-side interface with Al atom above the metal atom exhibits an Al–V and V–Ti metal bond characteristics. The hybridization between Al-sp and N-sp orbitals is the main interaction that strengthens the interfacial adhesion.



The authors are especially grateful to the project supported by the National Natural Science Foundation of China (Grant no. 51704049), Chongqing Research Program of Basic Research and Frontier Technology no. cstc2017jcyjAX0312 and Project no. 106112017CDJXY320002 supported by the Fundamental Research Funds for the Central Universities.

Supplementary material

339_2018_1932_MOESM1_ESM.docx (140 kb)
Supplementary material 1 (DOCX 139 KB)


  1. 1.
    H. Clemens, H. Kestler, Adv. Eng. Mater. 2, 551 (2000)CrossRefGoogle Scholar
  2. 2.
    H. Clemens, S. Mayer, Adv. Eng. Mater. 15, 191 (2013)CrossRefGoogle Scholar
  3. 3.
    C.C. Koh, Mater. Sci. Eng. A. 244, 39 (1998)CrossRefGoogle Scholar
  4. 4.
    L. Xi, I. Kaban, R. Nowak, B. Korpała, G. Bruzda, J. Mater. Sci. 50, 2682 (2015)ADSCrossRefGoogle Scholar
  5. 5.
    X. Zhang, T. Hu, J.F. Rufner, T. LaGrange, G.H. Campbell, E.J. Lavernia, J.M. Schoenung, K. van Benthem, Acta Mater. 95, 254 (2015)CrossRefGoogle Scholar
  6. 6.
    D.J. Siegel, L.G.H. Jr, J.B. Adams, Phys. Rev. B Condens. Matter 67, 552 (2013)Google Scholar
  7. 7.
    X. Liu, X. Lv, H. Dong, C. Li, C. Bai, Metall. Mater. Trans. A 46, 4783 (2015)CrossRefGoogle Scholar
  8. 8.
    X. Guo, Y. Zhang, Y.G. Jung, L. Li, J. Knapp, J. Zhang, Mater. Des. 112, 254 (2016)CrossRefGoogle Scholar
  9. 9.
    Z. Wang, S. Tsukimoto, M. Saito, Y. Ikuhara, Phys. Rev. B 79, 045318 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    L.M. Liu, S.Q. Wang, H.Q. Ye, Surf. Sci. 550, 46 (2004)ADSCrossRefGoogle Scholar
  11. 11.
    N. Jin, Y. Yang, X. Luo, J. Li, B. Huang, S. Liu, Z. Xiao, Appl. Surf. Sci. 314, 896 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    M. Christensen, S. Dudiy, G. Wahnström, Phys. Rev. B 65, 17002 (2002)CrossRefGoogle Scholar
  13. 13.
    B. Herschend, K. Hermansson, M. Alfredsson, Y.F. Zhukovskii, E.A. Kotomin, P.W.M. Jacobs, J. Phys. Chem. B 107, 11893 (2003)CrossRefGoogle Scholar
  14. 14.
    A. Arya, E.A. Carter, J. Chem. Phys. 118, 8982 (2003)ADSCrossRefGoogle Scholar
  15. 15.
    D.J. Siegel, L.G. Hector, J.B. Adams, Acta Mater. 50, 619 (2002)CrossRefGoogle Scholar
  16. 16.
    J. Hartford, Phys. Rev. B 61, 2221 (2003)ADSCrossRefGoogle Scholar
  17. 17.
    S.K. Yadav, S. Shao, J. Wang, X.Y. Liu, Sci. Rep. 5, 17380 (2015)ADSCrossRefGoogle Scholar
  18. 18.
    R. Beye, M. Verwerft, J.T.M. Hosson, R. Gronsky, Acta Mater. 44, 4225 (1996)CrossRefGoogle Scholar
  19. 19.
    W.B. Pearson, G.V. Raynor, A handbook of lattice spacing and structure of metals and alloys, 1st edn (Pergamon, New York, 1961), pp. 131–217Google Scholar
  20. 20.
    T. K.Tanaka, H. Ichitsubo, M. Inui, M. Yamaguchi, Koiwa, Philos. Mag. Lett. 73, 71 (1996)ADSCrossRefGoogle Scholar
  21. 21.
    D.J. Siegel, L.G. Hector, J.B. Adams, Phys. Rev. B 67, 092105 (2003)ADSCrossRefGoogle Scholar
  22. 22.
    P. Villars, L.D. Calvet, Pearson’s Handbook of Crystallographic Data for Intermetallic Phases, Rev Sub ed. By ASM International, (Springer, Ohio, 1986), p. 3258Google Scholar
  23. 23.
    P.S. Herle, M.S. Hegde, N.Y. Vasathacharya, S. Philip, M.V.R. Rao, T. Sripathi, J. Solid State Chem. 134, 120 (1997)ADSCrossRefGoogle Scholar
  24. 24.
    A. Arya, E.A. Carter, Surf. Sci. 560, 103 (2004)ADSCrossRefGoogle Scholar
  25. 25.
    L.M. Liu, S.Q. Wang, H.Q. Ye, Acta Mater. 52, 3681 (2004)CrossRefGoogle Scholar
  26. 26.
    S.S. Carara, L.A. Thesing, Thin Solid Films 515, 2730 (2006)ADSCrossRefGoogle Scholar
  27. 27.
    L. Wang, J.S.,F.H. Wang, Y. Zhang, J. Phys. Condens. Matter 23, 265009 (2011)ADSCrossRefGoogle Scholar
  28. 28.
    J. Zou, C.L. Fu, M.H. Yoo, Intermetallics 3, 265 (1995)CrossRefGoogle Scholar
  29. 29.
    S.E. Kulkova, A.V. Bakulin, Q.M. Hu, R. Yang, Comput. Mater. Sci. 97, 55 (2015)CrossRefGoogle Scholar
  30. 30.
    R. Hultgren, P.D. Desai, D.T. Hawkins, M. Gleiser, K.K. Kelley, Selected Values of the Thermodynamic Properties of Binary Alloys (American Society for Metals, Ohio, 1973), p. 55Google Scholar
  31. 31.
    A.V. Bakulin, S.E. Kulkova, Q.M. Hu, R.Yang. J. Exp. Theor. Phys. 120, 257 (2015)ADSCrossRefGoogle Scholar
  32. 32.
    Y. Li, Y. Gao, B. Xiao, T. Min, S. Ma, D. Yi, Appl. Surf. Sci. 257, 5671 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Xuyang Liu
    • 1
    Email author
  • Hongbiao Dong
    • 2
  • Xuewei Lv
    • 3
  • Chenguang Bai
    • 3
  • Ning Hu
    • 1
  • Liangying Wen
    • 3
  • Zhongqing Yang
    • 4
  1. 1.College of Aerospace EngineeringChongqing UniversityChongqingPeople’s Republic of China
  2. 2.Department of EngineeringUniversity of LeicesterLeicesterUK
  3. 3.College of Materials Science and EngineeringChongqing UniversityChongqingPeople’s Republic of China
  4. 4.Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, Ministry of EducationChongqing UniversityChongqingPeople’s Republic of China

Personalised recommendations