Advertisement

Applied Physics A

, 125:120 | Cite as

Hybrid UV laser direct writing of UV-curable PDMS thin film using aerosol jet printing

  • Arndt HohnholzEmail author
  • Kotaro Obata
  • Yasutaka Nakajima
  • Jürgen Koch
  • Mitsuhiro Terakawa
  • Oliver Suttmann
  • Ludger Overmeyer
Article
  • 32 Downloads

Abstract

Polydimethylsiloxane (PDMS) is widely used for bio-medical, optical and microfluidic applications. Hence, PDMS layers on free-form surfaces on defined areas are needed. Conventional ways such as spin coating show drawbacks by long processing time and no sufficient application on free form surfaces. In this work, laser direct writing with UV-curable PDMS on a curved surface was performed. The coating technique using aerosol jet printing showed thin film thicknesses, compared to conventional spin coating techniques, obtaining controllable layer thickness down to 3.5 µm in 5 min on an area of 600 mm2 and on non-flat surfaces. Deposition rate control achieved layer thicknesses between 3.5 and 25.7 µm. The combination of material deposition and x–y galvanometric mirror scanner-based laser direct writing leads to a hybrid approach aiming for several applications in the fields of surface functionalization, and bio-medical and sensory applications. In addition, the procedure is able to overcome the batch-based PDMS processing and introduce the continuous flow-based application.

Notes

Acknowledgements

The authors would like to thank Shin-Etsu Silicones Europe B.V. for providing the PDMS sample. The authors also would like to thank Patrick Rößler for experimental support. This research was supported as part of joint research projects by “Projektbezogener Personenaustausch mit Japan” (DAAD-JSPS) Joint Research Program (Project No. 57245147). The authors acknowledge financial support in the frame of the 3D-PolySPRINT Project (BMBF FKZ 13N13567).

References

  1. 1.
    F. Schneider, J. Draheim, R. Kamberger, U. Wallrabe, Sens. Actuators, A 151, 95 (2009)CrossRefGoogle Scholar
  2. 2.
    M. Unger, H. Chou, T. Thorsen, A. Scherer, S. Quake, Science 288, 113 (2000)ADSCrossRefGoogle Scholar
  3. 3.
    M. Takai, T. Shirai, K. Ishihara, J Photopolym Sci Tec 24(5), 597 (2011)CrossRefGoogle Scholar
  4. 4.
    B. Lin, Y. Yang, C. Ho, H. Yang, H. Wang, Sensors 14(14), 2967 (2014)CrossRefGoogle Scholar
  5. 5.
    D.C. Duffy, J. Cooper, O.J.A. McDonald, G.M. Schueller, Whitesides, Anal. Chem. 70, 4974 (1998)CrossRefGoogle Scholar
  6. 6.
    J.W. Park, B. Vahidi, A.M. Taylor, S.W. Rhee, N.L. Jeon, Nat. Prot. 1(4), 2128 (2006)CrossRefGoogle Scholar
  7. 7.
    A. Werber, H. Zappe, Appl. Opt. 44(16), 3238 (2005)ADSCrossRefGoogle Scholar
  8. 8.
    N. Ishikawa, Y. Hanada, I. Ishikawa, K. Sugioka, K. Midorikawa, Appl. Phys. B 119, 503 (2015)ADSCrossRefGoogle Scholar
  9. 9.
    P. Zuo, X.J. Li, D.C. Dominguez, B.C. Ye, Lab Chip. 13(19), 3921 (2013)CrossRefGoogle Scholar
  10. 10.
    L. He, Y.F. Xiao, C. Dong, J. Zhu, V. Gaddam, L. Yang, Appl. Phys. Lett. 93, 201102–201101 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    D.X. Lu, Y.L. Zhang, D.D. Han, H. Wang, H. Xia, Q.D. Chen, H. Ding, H.B. Sun, J. Mater. Chem. C 3, 1751 (2015)CrossRefGoogle Scholar
  12. 12.
    K. Tsougeni, A. Tserepi, E. Gogolides, Microelectron Eng. 84, 1104 (2007)CrossRefGoogle Scholar
  13. 13.
    R. Ramji, N. Khan, A. Munoz-Rojas, K. Miller-Jensen, RSC Adv. 5(81), 66294 (2015)CrossRefGoogle Scholar
  14. 14.
    A.A. Epshteyn, S. Maher, A.J. Taylor, A.B. Holton, J.T. Borenstein, J.D. Cuiffi, Biomicrofluidics 5, 046501–046501 (2011)CrossRefGoogle Scholar
  15. 15.
    D. Caputo, G. de Cesare, N.L. Vecchio, A. Nascetti, E. Parisi, R. Scipinotti, Microelectronics J. 45, 1684 (2014)CrossRefGoogle Scholar
  16. 16.
    K. Obata, A. Schonewille, S. Slobin, A. Hohnholz, C. Unger, J. Koch, O. Suttmann, L. Overmeyer, Appl. Phys. Lett. 111, 121903 (2017)ADSCrossRefGoogle Scholar
  17. 17.
    J. Koschwanez, R. Carlson, D. Meldrum, PLoS One 4(2), e4572 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    B.E. Kahn, OPE 1(2), 14 (2007)MathSciNetGoogle Scholar
  19. 19.
    B.H. King, M.J. O’Reilly, S.M. Barnes, in Proceedings of 34th IEEE Photovoltaic Specialists Conference (PVSC), Philadelphia, 2009Google Scholar
  20. 20.
    J.A. Paulsen, M. Renn, K. Christenson, R. Plourde, in Proceedings of Future of Instrumentation International Workshop 2012, Tennessee, 2012Google Scholar
  21. 21.
    T. Fujii, MEE 61–62, 907 (2002)Google Scholar
  22. 22.
    C.L. Sones, I.N. Katis, B. Mills, M. Feinaeugle, A. Mosayyebi, J. Butement, R.W. Eason, Appl. Surf. Sci. 298, 125 (2014)ADSCrossRefGoogle Scholar
  23. 23.
    M.B. Kant, S.D. Shinde, D. Bodas, K.R. Patil, V.G. Sathe, K.P. Adhi, S.W. Gosavi, Appl. Surf. Sc. 314, 292 (2014)ADSCrossRefGoogle Scholar
  24. 24.
    T. Scharnweber, R. Truckenmuller, A.M. Schneider, A. Welle, M. Reinhardt, S. Giselbrecht, Lab Chip 11, 1368 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laser Zentrum Hannover e.V.HannoverGermany
  2. 2.School of Integrated Design EngineeringKeio UniversityKohoku-kuJapan
  3. 3.Department of Electronics and Electrical EngineeringKeio UniversityKohoku-kuJapan

Personalised recommendations