Advertisement

Applied Physics A

, 124:459 | Cite as

Photocatalytic quartz fiber felts with carbon-connected TiO2 nanoparticles for capillarity-driven continuous-flow water treatment

  • Xiaofei Zhang
  • Xiaowen Su
  • Wenqiang Gao
  • Fulei Wang
  • Zhihe Liu
  • Jie Zhan
  • Baishan Liu
  • Ruosong Wang
  • Hong LiuEmail author
  • Yuanhua SangEmail author
Article

Abstract

Immobility of photocatalysts on substrates is a vital factor for the practical application of photocatalysis in polluted water/air treatment. In this study, TiO2 homogenously loaded quartz fiber felt was prepared by assembling of carboxyl-contained organic molecules functionalized TiO2 nanoparticles on the surface of amino group-modified quartz fiber by electrostatic adsorption between them and followed by an anneal process. The immobilization of TiO2 nanoparticles overcomes one main obstacle of the photocatalysts recycling in photocatalysis application. In addition, a plasma treatment endowed the hybrid photocatalyst a high hydrophilic property. Due to the homogeneous distribution of TiO2, charge carriers’ separation by carbon, and full contact between water and the photocatalyst derived from the high hydrophilia, the TiO2/quartz fiber felt shows excellent photocatalytic performance. Based on the stable loading and the capillarity effect of the contacted fibers photocatalyst, a demo capillarity-driven continuous-flow water treatment photocatalysis reactor was designed and built up. The TiO2 nanoparticle/quartz fiber hybrid photocatalyst can disposal organic contaminants in actual industrial waste water from a dyeing factory in the continuous-flow reactor. The chemical oxygen demand (COD) of the industrial waste water was decreased from 104 to 45 mg/L, overcoming the problem of deep water treatment which is difficult to solve by other methods. This study provides a new photocatalyst and reaction mode for the continuous-flow photocatalysis application.

Graphical abstract

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant nos. 51732007 and 51372138), the National Key Research and Development Program of China (2017YFE0102700), the Fundamental Research Funds of Shandong University (2015JC017), the 2014 Innovative Jiaxing Elite Leading Talents Program (A), and the Science and Technology Project Foundation of Jiaxing City (2015BZ12004).

Compliance with ethical standards

Conflict of interest

There are no conflicts of interest to report.

Supplementary material

339_2018_1870_MOESM1_ESM.docx (862 kb)
Supplementary material 1 (DOCX 862 KB)

Supplementary material 2 (MP4 9470 KB)

References

  1. 1.
    J.H. Carey, J. Lawrence, H.M. Tosine, Photodechlorination of PCB’s in the presence of titanium dioxide in aqueous suspensions. Bull. Environ. Contam. Toxicol. 16, 697–701 (1976)CrossRefGoogle Scholar
  2. 2.
    S.N. Frank, A.J. Bard, Heterogeneous photocatalytic oxidation of cyanide ion in aqueous solutions at titanium dioxide powder. J. Am. Chem. Soc. 99, 303–304 (1977)CrossRefGoogle Scholar
  3. 3.
    A.L. Pruden, D.F. Ollis, Photoassisted heterogeneous catalysis: the degradation of trichloroethylene in water. J. Catal. 82, 404–417 (1983)CrossRefGoogle Scholar
  4. 4.
    A. Mills, R.H. Davies, D. Worsley, Water purification by semiconductor photocatalysis. Chem. Soc. Rev. 22, 417–425 (1993)CrossRefGoogle Scholar
  5. 5.
    M.N. Chong, B. Jin, C.W.K. Chow, C. Saint, Recent developments in photocatalytic water treatment technology: a review. Water Res. 44, 2997–3027 (2010)CrossRefGoogle Scholar
  6. 6.
    A.L. Linsebigler, G. Lu, J.T. Yates Jr., Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem. Rev. 95, 735–758 (1995)CrossRefGoogle Scholar
  7. 7.
    K. Hashimoto, H. Irie, A. Fujishima, TiO2 photocatalysis: a historical overview and future prospects. Jpn. J. Appl. Phys. 44, 8269 (2005)ADSCrossRefGoogle Scholar
  8. 8.
    S.G. Kumar, L.G. Devi, Review on modified TiO2 photocatalysis under UV/visible light: selected results and related mechanisms on interfacial charge carrier transfer dynamics. J. Phys. Chem. A 115, 13211–13241 (2011)CrossRefGoogle Scholar
  9. 9.
    K. Hofstadler, R. Bauer, S. Novalic, G. Heisler, New reactor design for photocatalytic wastewater treatment with TiO2 immobilized on fused-silica glass fibers: photomineralization of 4-chlorophenol. Environ. Sci. Technol. 28, 670–674 (1994)ADSCrossRefGoogle Scholar
  10. 10.
    H. Yu, S.C. Lee, J. Yu, C.H. Ao, Photocatalytic activity of dispersed TiO2 particles deposited on glass fibers. J. Mol. Catal. A Chem 246, 206–211 (2006)CrossRefGoogle Scholar
  11. 11.
    L. Zhang, Y. Zhu, Y. He, W. Li, H. Sun, Preparation and performances of mesoporous TiO2 film photocatalyst supported on stainless steel. Appl. Catal. B Environ. 40, 287–292 (2003)CrossRefGoogle Scholar
  12. 12.
    J.C. Yu, W. Ho, J. Lin, H. Yip, P.K. Wong, Photocatalytic activity, antibacterial effect, and photoinduced hydrophilicity of TiO2 films coated on a stainless steel substrate. Environ. Sci. Technol. 37, 2296–2301 (2003)ADSCrossRefGoogle Scholar
  13. 13.
    Y. Li, X. Li, J. Li, J. Yin, Photocatalytic degradation of methyl orange by TiO2-coated activated carbon and kinetic study. Water Res. 40, 1119–1126 (2006)CrossRefGoogle Scholar
  14. 14.
    J.G. McEvoy, W. Cui, Z. Zhang, Synthesis and characterization of Ag/AgCl-activated carbon composites for enhanced visible light photocatalysis. Appl. Catal. B Environ. 144, 702–712 (2014)CrossRefGoogle Scholar
  15. 15.
    A. Nezamzadeh-Ejhieh, S. Khorsandi, Photocatalytic degradation of 4-nitrophenol with ZnO supported nano-clinoptilolite zeolite. J. Ind. Eng. Chem. 20, 937–946 (2014)CrossRefGoogle Scholar
  16. 16.
    I. Jansson, K. Yoshiiri, H. Hori, F.J. García-García, S. Rojas, B. Sánchez, B. Ohtani, S. Suárez, Visible light responsive Zeolite/WO3–Pt hybrid photocatalysts for degradation of pollutants in air. Appl. Catal. A 521, 208–219 (2016)CrossRefGoogle Scholar
  17. 17.
    B. Erjavec, P. Hudoklin, K. Perc, T. Tišler, M.S. Dolenc, A. Pintar, Glass fiber-supported TiO2 photocatalyst: efficient mineralization and removal of toxicity/estrogenicity of bisphenol A and its analogs. Appl. Catal. B Environ. 183, 149–158 (2016)CrossRefGoogle Scholar
  18. 18.
    S.I. Patsios, V.C. Sarasidis, A.J. Karabelas, A hybrid photocatalysis–ultrafiltration continuous process for humic acids degradation. Sep. Purif. Technol. 104, 333–341 (2013)CrossRefGoogle Scholar
  19. 19.
    S. Mozia, Photocatalytic membrane reactors (PMRs) in water and wastewater treatment. A review. Sep. Purif. Technol. 73, 71–91 (2010)CrossRefGoogle Scholar
  20. 20.
    W. Zhou, G. Du, P. Hu, Y. Yin, J. Li, J. Yu, G. Wang, J. Wang, H. Liu, J. Wang, H. Zhang, Nanopaper based on Ag/TiO2 nanobelts heterostructure for continuous-flow photocatalytic treatment of liquid and gas phase pollutants. J. Hazard. Mater. 197, 19–25 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    A. Sugunan, V.K. Guduru, A. Uheida, M.S. Toprak, M. Muhammed, Radially oriented ZnO nanowires on flexible poly-l-lactide nanofibers for continuous-flow photocatalytic water purification. J. Am. Ceram. Soc. 93, 3740–3744 (2010)CrossRefGoogle Scholar
  22. 22.
    Z. He, Y. Li, Q. Zhang, H. Wang, Capillary microchannel-based microreactors with highly durable ZnO/TiO2 nanorod arrays for rapid, high efficiency and continuous-flow photocatalysis. Appl. Catal. B Environ. 93, 376–382 (2010)CrossRefGoogle Scholar
  23. 23.
    M.A. Behnajady, N. Modirshahla, N. Daneshvar, M. Rabbani, Photocatalytic degradation of an azo dye in a tubular continuous-flow photoreactor with immobilized TiO2 on glass plates. Chem. Eng. J. 127, 167–176 (2007)CrossRefGoogle Scholar
  24. 24.
    C. McCullagh, N. Skillen, M. Adams, P.K.J. Robertson, Photocatalytic reactors for environmental remediation: a review. J. Chem. Technol. Biotechnol. 86, 1002–1017 (2011)CrossRefGoogle Scholar
  25. 25.
    S. Meshram, R. Limaye, S. Ghodke, S. Nigam, S. Sonawane, R. Chikate, Continuous flow photocatalytic reactor using ZnO–bentonite nanocomposite for degradation of phenol. Chem. Eng. J. 172, 1008–1015 (2011)CrossRefGoogle Scholar
  26. 26.
    G. Rytwo, T. Klein, S. Margalit, O. Mor, A. Naftali, G. Daskal, A continuous-flow device for photocatalytic degradation and full mineralization of priority pollutants in water. Desalin. Water Treat. 57, 16424–16434 (2016)CrossRefGoogle Scholar
  27. 27.
    A. Rahul, T. Damodar, Swaminathan, Performance evaluation of a continuous flow immobilized rotating tube photocatalytic reactor (IRTPR) immobilized with TiO2 catalyst for azo dye degradation. Chem. Eng. J. 144, 59–66 (2008)CrossRefGoogle Scholar
  28. 28.
    K. Kobayakawa, C. Sato, Y. Sato, A. Fujishima, Continuous-flow photoreactor packed with titanium dioxide immobilized on large silica gel beads to decompose oxalic acid in excess water. J. Photochem. Photobiol. A 118, 65–69 (1998)CrossRefGoogle Scholar
  29. 29.
    W.-Y. Wang, A. Irawan, Y. Ku, Photocatalytic degradation of Acid Red 4 using a titanium dioxide membrane supported on a porous ceramic tube. Water Res. 42, 4725–4732 (2008)CrossRefGoogle Scholar
  30. 30.
    S. Chang, X. Yang, Y. Sang, H. Liu, Highly efficient photocatalysts and continuous-flow photocatalytic reactors for degradation of organic pollutants in wastewater. Chem. Asian J. 11, 2352–2371 (2016)CrossRefGoogle Scholar
  31. 31.
    A.H. Chan, C.K. Chan, J.P. Barford, J.F. Porter, Solar photocatalytic thin film cascade reactor for treatment of benzoic acid containing wastewater. Water Res. 37, 1125–1135 (2003)CrossRefGoogle Scholar
  32. 32.
    R. Villacres, S. Ikeda, T. Torimoto, B. Ohtani, Development of a novel photocatalytic reaction system for oxidative decomposition of volatile organic compounds in water with enhanced aeration. J. Photochem. Photobiol. A 160, 121–126 (2003)CrossRefGoogle Scholar
  33. 33.
    S. Jung, K. Yong, Fabrication of CuO–ZnO nanowires on a stainless steel mesh for highly efficient photocatalytic applications. Chem. Commun. 47, 2643 (2011)CrossRefGoogle Scholar
  34. 34.
    M. Bestetti, D. Sacco, M.F. Brunella, S. Franz, R. Amadelli, L. Samiolo, Photocatalytic degradation activity of titanium dioxide sol–gel coatings on stainless steel wire meshes. Mater. Chem. Phys. 124, 1225–1231 (2010)CrossRefGoogle Scholar
  35. 35.
    J. Wang, W. Liu, H. Li, H. Wang, Z. Wang, W. Zhou, H. Liu, Preparation of cellulose fiber–TiO2 nanobelt–silver nanoparticle hierarchically structured hybrid paper and its photocatalytic and antibacterial properties. Chem. Eng. J. 228, 272–280 (2013)CrossRefGoogle Scholar
  36. 36.
    S. Chang, Q. Wang, B. Liu, Y. Sang, H. Liu, Hierarchical TiO2 nanonetwork–porous Ti 3D hybrid photocatalysts for continuous-flow photoelectrodegradation of organic pollutants. Catal. Sci. Technol. 7, 524–532 (2017)CrossRefGoogle Scholar
  37. 37.
    H. Chun, W. Yizhong, T. Hongxiao, Preparation and characterization of surface bond-conjugated TiO2/SiO2 and photocatalysis for azo dyes. Appl. Catal. B Environ. 30, 277–285 (2001)CrossRefGoogle Scholar
  38. 38.
    B. Hojjati, R. Sui, P.A. Charpentier, Synthesis of TiO2/PAA nanocomposite by RAFT polymerization. Polymer 48, 5850–5858 (2007)CrossRefGoogle Scholar
  39. 39.
    S.S. Madaeni, S. Zinadini, V. Vatanpour, A new approach to improve antifouling property of PVDF membrane using in situ polymerization of PAA functionalized TiO2 nanoparticles. J. Membr. Sci. 380, 155–162 (2011)CrossRefGoogle Scholar
  40. 40.
    T. Matsunaga, M. Inagaki, Carbon-coated anatase for oxidation of methylene blue and NO. Appl. Catal. B Environ. 64, 9–12 (2006)CrossRefGoogle Scholar
  41. 41.
    Y. Sang, Z. Zhao, J. Tian, P. Hao, H. Jiang, H. Liu, J.P. Claverie, Enhanced photocatalytic property of reduced graphene Oxide/TiO2 nanobelt surface heterostructures constructed by an in situ photochemical reduction method. Small 10, 3775–3782 (2014)CrossRefGoogle Scholar
  42. 42.
    W. Han, W. Zhu, P. Zhang, Y. Zhang, L. Li, Photocatalytic degradation of phenols in aqueous solution under irradiation of 254 and 185 nm UV light. Catal. Today 90, 319–332 (2004)CrossRefGoogle Scholar
  43. 43.
    N. Azbar, T. Yonar, K. Kestioglu, Comparison of various advanced oxidation processes and chemical treatment methods for COD and color removal from a polyester and acetate fiber dyeing effluent. Chemosphere 55, 35–43 (2004)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Crystal MaterialsShandong UniversityJinanChina
  2. 2.Jiaxing Rejdue Environmental Technology Co., Ltd.JiaxingChina
  3. 3.Institute for Advanced Interdisciplinary Research (IAIR)University of JinanJinanChina
  4. 4.CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and TechnologyChinese Academy of Science (CAS)SuzhouChina

Personalised recommendations