Applied Physics A

, 124:352 | Cite as

Doping influence on microwave detection by metal–porous silicon contacts

  • Jonas Gradauskas
  • Jolanta Stupakova
  • Algirdas Sužiedėlis
  • Steponas Ašmontas
  • Andrius Maneikis
  • Neringa Samuolienė
Article
  • 36 Downloads

Abstract

We present the study of voltage signal rise across both additionally doped and undoped porous silicon diode sensors exposed to microwave radiation. The doped ones exhibit fast, of the nanosecond order, response times, but lower voltage–power responsivity values as compared to similar diodes but containing no porous layer. Insertion of porous surface layer into the undoped samples can significantly enhance their responsivity, however, they demonstrate much slower, of the order of tens of microseconds, response to microwave-modulating pulse. Microwave radiation induces voltage signals of opposite polarity in different types of the porous samples. Models all based mainly on hot carrier effects are exploited to explain the experimental results. Possible aspects of application are discussed as well.

Notes

Acknowledgements

This work was in part supported by the Research Council of Lithuania (Grant No. LAT-03/2016) in the frame of National Science Program “Towards Future Technologies”. The authors are thankful to Marius Treideris and Nijolė Uzėlienė for their kind assistance in the sample preparation.

References

  1. 1.
    K. Peng, J. Jie, W. Zhang, S.T. Lee, Appl. Phys. Lett. 93, 033105 (2008)ADSCrossRefGoogle Scholar
  2. 2.
    A.I. Hochbaum, R. Chen, R.D. Delgado, W. Liang, E.C. Garnett, M. Najarian, A. Majumdar, P. Yang, Nature 451, 163 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    B. Zhang, H. Wang, L. Lu, K. Ai, G. Zhan, X. Cheng, Adv. Funct. Mater. 18, 2348 (2008)CrossRefGoogle Scholar
  4. 4.
    E.J. Anglin, L. Cheng, W.R. Freeman, M.J. Sailor, Adv. Drug Deliv. Rev. 60(11), 1266 (2008)CrossRefGoogle Scholar
  5. 5.
    H. Fang, X. Li, S. Song, Y. Xu, J. Zhu, Nanotechnology 19(25), 5703 (2008)CrossRefGoogle Scholar
  6. 6.
    E.C. Garnett, P. Yang, J. Am. Chem. Soc. 130, 9224 (2008)CrossRefGoogle Scholar
  7. 7.
    R.S. Dariani, M. Zabihipour, Appl. Phys. A 122, 1047 (2016).  https://doi.org/10.1007/s00339-016-0516-7)ADSCrossRefGoogle Scholar
  8. 8.
    A. Trabelsi, A. Zouari, Sol. Energy 107, 220 (2014)ADSCrossRefGoogle Scholar
  9. 9.
    J.H. Selj, Porous silicon for light management in silicon solar cells. University of Oslo, Ph.D. thesis (2010)Google Scholar
  10. 10.
    J. Gradauskas, J. Stupakova, in Porous Silicon: From Formation to Application, V2, ed. by G. Korotcenkov (Taylor & Francis Group, CRC Press, Boca Raton, 2016), p. 186Google Scholar
  11. 11.
    A. Petit, M. Delmotte, A. Loupy, J.N. Chazalviel, F. Ozanam, R. Boukherroub, J. Phys. Chem. C 112(42), 16622 (2008)CrossRefGoogle Scholar
  12. 12.
    A. Xia, W. Zhang, W. Bao, C. Dong, J. Zhang, J. Phys. Status Solidi A 209(11), 2247 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    C.M. Nam, Y.S. Kwon, Microw. Guided Wave Lett. IEEE 8(11), 369 (1998)CrossRefGoogle Scholar
  14. 14.
    G.E. Ponchak, I.K. Itotia, R.F. Drayton, Proceedings of 33rd european microwave conference, Munich, 45, (2003)Google Scholar
  15. 15.
    J. E.Shatkovskis, J. Gradauskas, A. Stupakova, A. Česnys, Sužiedėlis, Lith. J. Phys. 47(2), 169 (2007)CrossRefGoogle Scholar
  16. 16.
    A. Fantom, Radio Frequency Microwave Power Measurement (P. Peregrinus on behalf of the Institution of Electrical Engineers, London, 1990)CrossRefGoogle Scholar
  17. 17.
    R.J. Collier, A.D. Skinner, Microwave Measurements, 3rd edn. IET Electrical and Measurement Series, vol. 12. (The Institution of Engineering and Technology, London, 2007)Google Scholar
  18. 18.
    M. Ben-Chorin, F. Moller, F. Koch, J. Appl. Phys. 77(9), 4482 (1995)ADSCrossRefGoogle Scholar
  19. 19.
    V. Lehmann, Electrochemistry of Silicon. (Willey, Weinheim, 2002)CrossRefGoogle Scholar
  20. 20.
    S. Ašmontas, J. Gradauskas, V. Zagadsky, J. Stupakova, A. Sužiedėlis, E. Šatkovskis, Tech. Phys. Lett. 32(7), 603 (2006)ADSCrossRefGoogle Scholar
  21. 21.
    E. Shatkovskis, J. Stupakova, J. Gradauskas, A. Sužiedėlis, R. Mitkevičius, Lith. J. Phys. 51(2), 143 (2011)CrossRefGoogle Scholar
  22. 22.
    S. Ašmontas, Electrogradient Phenomena in Semiconductors. (Mokslas, Vilnius, 1984)Google Scholar
  23. 23.
    S. Ašmontas, B. Vengalis, V. Guoga, A. Olekas, A. Sužiedėlis, J. Commun. Technol. El. 28(2), 577 (1983)Google Scholar
  24. 24.
    A. Dargys, J. Kundrotas, Handbook of Physical Properties of Ge, Si GaAs and InP. (Science and Encyclopedia Publishers, Vilnius, 1994)Google Scholar
  25. 25.
    G. Amato, G. Benedetto, L. Boarino, N. Brunetto, R. Spagnolo, Opt. Eng. 36(2), 423 (1997)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Center for Physical Sciences and TechnologyVilniusLithuania
  2. 2.Vilnius Gediminas Technical UniversityVilniusLithuania

Personalised recommendations