Electric and optical properties of some new functional lower-rim-substituted calixarene derivatives in thin films
- 27 Downloads
Abstract
Electric (d.c. conduction mechanism, the influence of environmental humidity, thermistor effect) and optical properties of new five substituted calixarene derivatives in thin films have been studied. The films behave as typical n-type polycrystalline semiconductors with activation energy of the electric conduction between 0.26 and 2.36 eV. In the higher temperature range, the electron transport was explained in the frame of the band gap representation model, while at lower temperatures, the Mott’s variable-range hopping conduction model was found as appropriate. In terms of electric conductivity, these compounds are practically insensitive to ambient humidity below 53% RH, their sensitivity increasing greatly with the humidity in the range of 53–98% RH. Study of optical absorption spectra in the photon energy range of 0.71–4.03 eV (UV–Vis–NIR) revealed direct optical band gaps between 2.64 and 3.83 eV. Actual compounds show promising potential for thermistor applications.
Notes
Acknowledgements
This work was supported by the ANCS (National Authority for Scientific Research), Ministry of Economy, Trade and Business Environment, through the National Program Capacities, Project No. 257/28.09.2010 (Acronym CERNESIM).
References
- 1.R. Banerjee ed. Functional Supramolecular Materials: From Surfaces to MOFs. (Royal Society of Chemistry, Piccadilly, London, 2017)Google Scholar
- 2.K. Iniewski ed. Nanoelectronics–Nanowires, Molecular Electronics, and Nanodevices. (McGraw Hill, New York, 2011)Google Scholar
- 3.T.U. Kampen, Low Molecular Weight Organic Semiconductors. (Wiley, Weinheim, 2010)CrossRefGoogle Scholar
- 4.S. Ogawa ed. Organic Electronics Materials and Devices. (Springer, Tokyo, 2015)Google Scholar
- 5.S. Logothetidis ed. Handbook of Flexible Organic Electronics: Materials, Manufacturing and Applications. (Elsevier, Amsterdam, 2015)Google Scholar
- 6.D.A. Bernards, R.M. Owens, G.G. Malliaras, Organic semiconductors in sensor applications (Springer series in material science). (Springer-Verlag, Berlin, 2008)Google Scholar
- 7.P. Kumar, Organic Solar Cells: Device Physics, Processing, Degradation, and Prevention. (CRC Press, Boca Raton, 2017)Google Scholar
- 8.Y. Li ed. Organic Optoelectronic Materials. (Springer, Cham, 2015)Google Scholar
- 9.S. Schols, Device Architecture and Materials for Organic Light-Emitting Devices: Targeting High Current Densities and Control of the Triplet Concentration. (Springer, Dordrecht, 2011)CrossRefGoogle Scholar
- 10.A. Facchetti, T.J. Marks eds. Transparent Electronics: From Synthesis to Applications. (Wiley, Chichester, 2010)Google Scholar
- 11.I. Kymissis, Organic Field Effect Transistors: Theory, Fabrication and Characterization. (Springer, New York, 2009)CrossRefGoogle Scholar
- 12.A.G. Lebed ed. The physics of organic superconductors and conductors (Springer series in materials science), Vol. 110. (Springer, Berlin, 2008)Google Scholar
- 13.SSH Sun, NS Sariciftci (Eds.), Organic Photovoltaics: Mechanisms, Materials, and Devices. (CRC Press, Boca Raton, 2005)Google Scholar
- 14.M. Egginger, S. Bauer, R. Schwodiauer, H. Neugebauer, N.S. Sariciftci, Current versus gate voltage hysteresis in organic field effect transistors. Monatsh. Chem. 140(7), 735–750 (2009)CrossRefGoogle Scholar
- 15.N. Karl, Charge carrier transport in organic semiconductors. Synthetic Met. 133–134, 649–657 (2003)Google Scholar
- 16.F.C. Grozema, L.D.A. Siebbeles, Mechanism of charge transport in self-organizing organic materials. Int. Rev. Phys. Chem. 27(1), 87–138 (2008)CrossRefGoogle Scholar
- 17.J.L. Bredas, J.P. Calbert, D.A. da Silva Filho, J. Cornil, Organic semiconductors: A theoretical characterization of the basic parameters governing charge transport. PNAS 99(9), 5804–5809 (2002)ADSCrossRefGoogle Scholar
- 18.A. Köhler, H. Bässler, Electronic Processes in Organic Semiconductors—An Introduction. (Wiley, Weinheim, 2015)Google Scholar
- 19.N. Ueno, S. Kera, Electron spectroscopy of functional organic thin films: Deep insights into valence electronic structure in relation to charge transport property. Prog. Surf. Sci. 83(10–12), 490–557 (2008)Google Scholar
- 20.V. Coropceanu, J. Cornil, D.A. da Silva Filho, Y. Olivier, R. Silbey, JJ Brédas. Charge transport in organic semiconductors. Chem. Rev. 107(4), 926–952 (2007)CrossRefGoogle Scholar
- 21.W.A. Godard, III, D.W. Brenner, S.E. Lyshevski, G.J. Iafrate eds. Handbook of Nanoscience and Engineering and Technology,, 2nd edn. (CRC Press, New York, 2007)Google Scholar
- 22.S. Okur, M. Kus, F. Ozel, M. Yılmaz, Humidity adsorption kinetics of water soluble calix[4]arene derivatives measured using QCM technique. Sensor Actuat. B-Chem. 145, 93–97 (2010)CrossRefGoogle Scholar
- 23.P.G. Su, L.G. Lin, W.H. Tzou, Humidity sensing properties of calix[4]arene and functionalized calix[4]arene measured using a quartz-crystal microbalance. Sensor Actuat. B-Chem. 181, 795–801 (2013)CrossRefGoogle Scholar
- 24.F.L. Dickert, O. Schuster, Supramolecular detection of solvent vapours with calixarenes: mass-sensitive sensors, molecular mechanics and BET studies. Mikrochim. Acta 119, 55–62 (1995)CrossRefGoogle Scholar
- 25.A.R. Esker, L.H. Zhang, C.E. Olsen, K. No, H. Yu, Static and dynamic properties of calixarene monolayers at the air/water interface. 1. pH effects with p-dioctadecanoylcalix[4]arene. Langmuir 15, 1716–1724 (1999)CrossRefGoogle Scholar
- 26.V. Şunel, G.I. Rusu, G.G. Rusu, L. Leontie, L.C. Şoldea, Electric characteristics of some derivatives of p-aminobenzoic acid in thin films. Prog. Org. Coat. 26(1), 53–61 (1995)CrossRefGoogle Scholar
- 27.G.I. Rusu, I. Căplănuş, L. Leontie, A. Airinei, E. Butuc, D. Mardare, I.I. Rusu, Studies on the electronic transport properties of some aromatic polysulfones in thin films. Acta Mater. 49, 553–559 (2001)CrossRefGoogle Scholar
- 28.R. Danac, L. Leontie, M. Girtan, M. Prelipceanu, A. Graur, A. Carlescu, G.I. Rusu, On the direct current electric conductivity and conduction mechanism of some stable disubstituted 4-(4-pyridyl)pyridiniumylides in thin films. Thin Solid Films 556, 216–222 (2014)ADSCrossRefGoogle Scholar
- 29.R. Danac, L. Leontie, A. Carlescu, S. Shova, V. Tiron, G.G. Rusu, F. Iacomi, S. Gurlui, O. Susu, G.I. Rusu, Electric conduction mechanism of some heterocyclic compounds, 4,4-bipyridine and indolizine derivatives in thin films. Thin Solid Films 612, 358–368 (2016)ADSCrossRefGoogle Scholar
- 30.R. Rusu, N. Rosu, C. Dumea, A. Szumna, R. Danac, New triazole appended tert-butyl calix[4]arene conjugates: Synthesis, Hg + 2 binding studies. Tetrahedron 71(19), 2922–2926 (2015)CrossRefGoogle Scholar
- 31.W. Xu, J.J. Vittal, R.J. Puddephatt, Propargyl calix[4]arenes and their complexes with silver (I) and gold (I). Can. J. Chem. 74, 766–774 (1996)CrossRefGoogle Scholar
- 32.D. Levy, M. Zayat eds. The Sol–Gel Handbook-Synthesis, Characterization and Applications. (Wiley, Weinheim, 2015)Google Scholar
- 33.S. Tolansky, Multiple-Beam Interferometry of Surfaces and Films. (Dover, New York, 1970)Google Scholar
- 34.R. Smith, Semiconductors. (Cambridge University Press, London, 1980)MATHGoogle Scholar
- 35.G.I. Rusu, A. Airinei, M. Rusu, P. Prepeliţă, I. Marin, V. Cozan, I.I. Rusu, On the electronic transport mechanism in thin films of some new poly(azomethine sulfone)s. Acta Mater. 55(2), 433–442 (2007)CrossRefGoogle Scholar
- 36.C. Doroftei, P.D. Popa, N. Rezlescu, The influence of the heat treatment on the humidity sensitivity of magnesium nanoferrite. J. Optoelectron. Adv. Mater. 12(4), 881–884 (2010)Google Scholar
- 37.N. Rezlescu, E. Rezlescu, C. Doroftei, P.D. Popa, Study of some Mg-based ferrites as humidity sensors. J. Phys. Conf. Ser. 15(1), 296–299 (2005)CrossRefGoogle Scholar
- 38.C. Doroftei, P.D. Popa, F. lacomi, Study of the influence of nickel ions substitutes in barium stannates used as humidity resistive sensors. Sensor Actuat. A Phys. 173(1), 24–29 (2012)CrossRefGoogle Scholar
- 39.J. Pancove, Optical Processes in Semiconductors. (Prentice-Hall, Englewood Cliffs, 1979)Google Scholar
- 40.T.S. Moss, M. Balkanski eds. Handbook on Semiconductors: Optical Properties of Semiconductors, Vol. 110. (Elsevier, Amsterdam, 1994)Google Scholar
- 41.B.D. Cullity, R.S. Stock, Elements of X-ray Diffraction, 3rd edn. (Prentice Hall, New Jersey, 2001)Google Scholar
- 42.A. Benediktovitch, I. Feranchuk, A. Ulyanenkov, Theoretical Concepts of X-ray Nanoscale Analysis. Theory and Applications. (Springer, Berlin, 2014)MATHGoogle Scholar
- 43.L. Leontie, I. Olariu, G.I. Rusu, On the charge transport in some new carbanion disubstituted ylides in thin films. Mater. Chem. Phys. 80(2), 506–511 (2003)CrossRefGoogle Scholar
- 44.L. Leontie, I. Druta, R. Alupoae, G.I. Rusu, On the electronic transport in some new synthesized high resistivity organic semiconductors in thin films. Mater. Sci. Eng. B 100(3), 252–258 (2003)CrossRefGoogle Scholar
- 45.F. Gutman, L.E. Lyons, Organic Semiconductors, Part A. (Robert E. Publishing, Malabar, 1981)Google Scholar
- 46.H. Meier, Organic Semiconductors. (Verlag Chemie, Weinhneim, 1974)Google Scholar
- 47.G. Baccarani, B. Riccò, G.J. Spandini, Transport properties of polycrystalline silicon films. J. Appl. Phys. 49(11), 5565–5570 (1978)ADSCrossRefGoogle Scholar
- 48.J.Y.W. Seto, The electric properties of polycrystalline silicon films. J. Appl. Phys. 46(12), 5247–5254 (1975)ADSCrossRefGoogle Scholar
- 49.G. Horowitz, Organic field-effect transistors. Adv. Mater. 10(5), 365–377 (1998)CrossRefGoogle Scholar
- 50.L.L. Kazmerski ed. Polycrystalline and Amorphous Thin Films and Devices,. (Academic Press, New York, 1980)Google Scholar
- 51.L Leontie, R Danac, M Girtan, A Carlescu, AP Rambu, GI Rusu, Electron transport properties of some new 4-tert-butylcalix[4]arene derivatives in thin films. Mater. Chem. Phys. 135(1), 123–129 (2012)CrossRefGoogle Scholar
- 52.L. Leontie, R. Danac, I. Druta, A. Carlescu, G.I. Rusu, Newly synthesized fused heterocyclic compounds in thin films with semiconductor properties. Synth. Metal 160(11–12), 1273–1279 (2010)CrossRefGoogle Scholar
- 53.A.W. Dunmore, An improved electric hygrometer. J. Res. Nat. Bur. Stand. 23, 701–714 (1939)CrossRefGoogle Scholar
- 54.T. Nitta, Z. Terada, Ceramic humidity sensitive resistor device. Nat. Tech. Rept. 22, 885–894 (1976)Google Scholar
- 55.T. Morimoto, M. Nagao, F. Tokuda, Relation between the amounts of chemisorbed and physisorbed water on metal oxides. J. Phys. Chem. 73, 243–248 (1969)CrossRefGoogle Scholar
- 56.A. Tripathy, S. Pramanik, J. Cho, J. Santhosh, N.A.A. Osman, Role of morphological structure, doping, and coating of different materials in the sensing characteristics of humidity sensors. Sensor 14, 16343–16422 (2014)CrossRefGoogle Scholar
- 57.R.J. Hunter, Foundations of Colloid Science, 2nd edn. (Oxford University Press, Oxford, 2001)Google Scholar
- 58.S.J. Gregg, K.S.W. Sing, Adsorption, Surface Area and Porosity, 2nd edn. (Academic Press, New York, 1982), p. 121Google Scholar
- 59.A.W. Adamson, A.P. Gast, Physical Chemistry of Surfaces, 6th edn. (Wiley-Blackwell, New Jersey, 1997), p. 54Google Scholar
- 60.H.J. Butt, K. Graf, M. Kappl, Physics and Chemistry of Interfaces, 2nd edn. (Wiley-VCH, Weinheim, 2006), pp. 16–19Google Scholar
- 61.C. Doroftei, Structural, electric and humidity sensitivity properties of Zn-doped LPFO thin films deposited by rf magnetron sputtering. Mater. Chem. Phys. 157, 16–20 (2015)CrossRefGoogle Scholar
- 62.D. Dragoman, M. Dragoman, Optical Characterization of Solids. (Springer, Berlin Heidelberg, 2002)CrossRefMATHGoogle Scholar
- 63.B.C. Yadav, R.C. Yadav, P.K. Dwivedi, Sol-gel processed (Mg–Zn–Ti) oxide nano-composite film deposited on prism base as an opto-electronic humidity sensor. Sens. Actuators B Chem. 148, 413–419 (2010)CrossRefGoogle Scholar
- 64.N.F. Mott, E.A. Davis, R.A. Street, States in the gap and recombination in amorphous semiconductors. Phil. Mag. 32(5), 961–996 (1975)ADSCrossRefGoogle Scholar
- 65.S. Jagtap, S. Rane, S. Gosavi, D. Amalnerkar, Low temperature synthesis and characterization of NTC powder and its ‘lead free’ thick film thermistors. Microelectron. Eng. 87(2), 104–107 (2010)CrossRefGoogle Scholar
- 66.S. Jagtap, S. Rane, R. Aiyer, S. Gosavi, D. Amalnerkar, Study of microstructure, impedance and dc electrical properties of RuO2-spinel based screen printed ‘green’ NTC thermistor. Curr. Appl. Phys. 10(4), 1156–1163 (2010)ADSCrossRefGoogle Scholar
- 67.G.M. Gouda, C.L. Nagendra, Structural and electrical properties of mixed oxides of manganese and vanadium: A new semiconductor oxide thermistor material. Sens. Actuators A: Phys. 155(2), 263–271 (2009)CrossRefGoogle Scholar