Applied Physics A

, 124:350 | Cite as

Investigation of the electronic structure of tetragonal B3N3 under pressure

Article
  • 24 Downloads

Abstract

In this paper, we perform self-consistent field relaxation and electronic structure calculations of tetragonal B3N3 based on density functional theory, using LDA pseudopotential in the pressure range between − 30 and + 160 GPa. Although metallic B3N3 has a honeycomb structure, according to the electronic band structure, it has bulk properties (not layered) with effective mass non-interacting electron gas behavior near Fermi level (not Dirac massless) and a small anisotropy, about 0.56 in effective mass in the direction of MA relative to XM. Electronic calculations of the B3N3 under pressure show that increasing positive pressure causes the decrease of Fermi energy and total electronic density of states at Fermi level, due to the ionic bonding nature in the B3N3. The Fermi energy increases a little in pressure ranges of about + 100 to + 160 GPa. According to performed projected density of states calculations of the B3N3 under pressure, which p orbitals of boron and nitrogen atoms with three sp2 hybridized bonding have the most contribution in the electronic states at Fermi level, that have spatial distribution perpendicular to honeycomb planes in pressure range of − 30 to + 160 GPa, like p z orbitals in graphene. In overall, the contribution of the p orbitals of nitrogen atoms is greater than similar p orbitals of boron atoms. Accordingly, the orbitals of nitrogen and boron atoms with higher order, sp3 hybridized bonding have negligible electronic contribution at Fermi level in the all pressure range.

Notes

Acknowledgements

We gratefully acknowledge Mr. Mohammad Sandoghchi for the assistance in installation and using Quantum Espresso codes. In addition, we appreciate the reviewers for their helpful comments.

References

  1. 1.
    A.W. Topol, D.C. La Tulipe, L. Shi, D.J. Frank, K. Bernstein, S.E. Steen, A. Kumar, G.U. Singco, A.M. Young, K.W. Guarini, M. Ieong, IBM J. Res. Dev. 50, 491 (2006)CrossRefGoogle Scholar
  2. 2.
    J. Wu, W. Pisula, K. Mullen, Chem. Rev. 107, 718 (2007)CrossRefGoogle Scholar
  3. 3.
    L. Tao, E. Cinquanta, D. Chiappe, C. Grazianetti, M. Fanciulli, M. Dubey, A. Molle, D. Akinwande, Nat. Nanotech. 10, 227 (2015)ADSCrossRefGoogle Scholar
  4. 4.
    Y. Cai, G. Zhang, Y.-W. Zhang, Sci. Rep. 4, 6677 (2014)ADSCrossRefGoogle Scholar
  5. 5.
    R.S. Gupta, K. Goel, M. Gupta, M. Saxena, Int. J. High Speed Elec. Sys. 14, 676 (2004)CrossRefGoogle Scholar
  6. 6.
    W. Xin-Ran, S. Yi, Z. Rong, Chin. Phys. B 22, 098505 (2013)ADSCrossRefGoogle Scholar
  7. 7.
    F. Schwierz, J. Pezoldt, R. Granzner, R.S.C. Nanoscale 7, 8261 (2015)ADSCrossRefGoogle Scholar
  8. 8.
    M. Shulman, M. Warner, arXiv:1502.03103v1 (2015)
  9. 9.
    J. Wang, F. Ma, M. Sun, R.S.C. Adv. 7, 16801 (2017)Google Scholar
  10. 10.
    A. Ali, D. Seo, I.H. Cho, J. Semicond. Technol. Sci. 17, 156 (2017)CrossRefGoogle Scholar
  11. 11.
    A. Todri-Sanial, R. Ramos, H. Okuno, J. Dijon, A. Dhavamani, M. Widlicenus, K. Lilienthal, B. Uhlig, T. Sadi, V. Georgiev, A. Asenov, S. Amoroso, A. Pender, A. Brown, C. Millar, F. Motzfeld, B. Gotsmann, J. Liang, G. Goncalves, N. Rupesinghe, K. Teo, I.E.E.E. Circ Syst Magaz 17, 47 (2017)CrossRefGoogle Scholar
  12. 12.
    V.F. Pavlidis, I. Savidis, E.G. Friedman, Three-Dimensional Integrated Circuit Design, 2nd edn. (Elsevier Inc., Amsterdam, 2017)Google Scholar
  13. 13.
    A.C. Neto, F. Guinea, N.M. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    S.H. Zhang, Q. Wang, Y. Kawazoe, P. Jena, J. Am. Chem. Soc. 135, 18216 (2013)CrossRefGoogle Scholar
  15. 15.
    S. Zhao, J. Long, Phys. B 459, 134 (2015)ADSCrossRefGoogle Scholar
  16. 16.
    N.G. Chopra, R.J. Luyken, K. Cherrey, V.H. Crespi, M.L. Cohen, S.G. Louie, A. Zettl, Science 269, 966 (1995)ADSCrossRefGoogle Scholar
  17. 17.
    V. Salles, S. Bernard, A. Brioude, D. Cornu, P. Miele, Nanoscale 2, 215 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    F.P. Bundy, R.H. Wentorf, J. Chem. Phys. 38, 1144 (1963)ADSCrossRefGoogle Scholar
  19. 19.
    M. Grimsditch, E.S. Zouboulisa, A. Polian, J. Appl. Phys. 76, 832 (1994)ADSCrossRefGoogle Scholar
  20. 20.
    A. Bosak, J. Serrano, M. Krisch, Phys. Rev. B 73, 041402 (2006)ADSCrossRefGoogle Scholar
  21. 21.
    J.J. Pouch, S.A. Alterovitz (eds.), Synthesis and Properties of Boron Nitride, (Trans-Tech, Ackermannsdorf, Switzerland, 1990), p. 227Google Scholar
  22. 22.
    X. Jiang, J.J. Zhao, R. Ahuja, J. Phys. Condens. Matter 25, 122204 (2013)ADSCrossRefGoogle Scholar
  23. 23.
    L. Hromadová, R. Martoňák, Phys. Rev. B 84, 224108 (2011)ADSCrossRefGoogle Scholar
  24. 24.
    L. Vel, G. Demazeau, J. Etourneau, Mat. Sci. Eng. B 10, 149 (1991)CrossRefGoogle Scholar
  25. 25.
    Y.-N. Xu, W.Y. Ching, Phys. Rev. B44, 7787 (1991)ADSCrossRefGoogle Scholar
  26. 26.
    B. Wen, J.J. Zhao, R. Melnik, Y.J. Tian, Phys. Chem. Chem. Phys. 13, 3891 (2011)CrossRefGoogle Scholar
  27. 27.
    Z.P. Li, F.M. Gao, Phys. Chem. Chem. Phys. 14, 10967 (2012)CrossRefGoogle Scholar
  28. 28.
    C.Y. He, L.Z. Sun, C.X. Zhang, X.Y. Peng, K.W. Zhang, J.X. Zhong, Phys. Chem. Chem. Phys. 14, 680 (2012)Google Scholar
  29. 29.
    Z. Zhang, M. Lu, L. Zhu, L. Zhu, Y. Li, M. Zhang, Q. Li, Phys. Lett. A 378, 741 (2014)ADSCrossRefGoogle Scholar
  30. 30.
    S. Bernard, V. Salles, J. Li, A. Brioude, M. Bechelany, U.B. Demirci, P. Miele, J. Mater. Chem. 21, 8694 (2011)CrossRefGoogle Scholar
  31. 31.
    D. Golberg, Y. Bando, O. Stephan, K. Kurashima, Appl. Phys. Lett. 73, 2441 (1998)ADSCrossRefGoogle Scholar
  32. 32.
    M. Xiong, K. Luo, Y. Pan, L. Liu, G. Gao, D. Yu, J. He, B. Xu, Z. Zhao, J. Alloys Compounds 731, 364 (2018)CrossRefGoogle Scholar
  33. 33.
    M. Xiong, K. Luo, D. Yu, Z. Zhao, J. He, G. Gao, J. Appl. Phys. 121, 165106 (2017)ADSCrossRefGoogle Scholar
  34. 34.
    G. Profeta, M. Calandra, F. Mauri, Nat. Phys. 8, 131 (2012)CrossRefGoogle Scholar
  35. 35.
    T.E. Weller, M. Ellerby, S.S. Saxena, R.P. Smith, N.T. Skipper, Nat. Phys. 1, 39 (2005)CrossRefGoogle Scholar
  36. 36.
    P. Giannozzi et al., J. Phys. Condens. Matter. 21, 395502 (2009).  https://doi.org/10.1088/0953-8984/21/39/395502 CrossRefGoogle Scholar
  37. 37.
    L.S. Pan, D.R. Kania, Diamond: Electronic Properties and Applications (Springer, New York, 1995)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Sharif University of TechnologyTehranIslamic Republic of Iran

Personalised recommendations