Applied Physics A

, 124:368 | Cite as

High thermal conductivity liquid metal pad for heat dissipation in electronic devices

  • Zuoye Lin
  • Huiqiang Liu
  • Qiuguo Li
  • Han Liu
  • Sheng Chu
  • Yuhua Yang
  • Guang Chu
Rapid communication
  • 32 Downloads

Abstract

Novel thermal interface materials using Ag-doped Ga-based liquid metal were proposed for heat dissipation of electronic packaging and precision equipment. On one hand, the viscosity and fluidity of liquid metal was controlled to prevent leakage; on the other hand, the thermal conductivity of the Ga-based liquid metal was increased up to 46 W/mK by incorporating Ag nanoparticles. A series of experiments were performed to evaluate the heat dissipation performance on a CPU of smart-phone. The results demonstrated that the Ag-doped Ga-based liquid metal pad can effectively decrease the CPU temperature and change the heat flow path inside the smart-phone. To understand the heat flow path from CPU to screen through the interface material, heat dissipation mechanism was simulated and discussed.

Notes

Acknowledgements

We appreciate financial support from National Science Foundation of China (Grant No. 11204097 and U1530120).

References

  1. 1.
    A. Smyrnakis, P. Dimitrakis, P. Normand, E. Gogolides, Microelectron. Eng. 174, 74 (2017)CrossRefGoogle Scholar
  2. 2.
    M. Kwon, J.Y. Lee, W.Y. Won, J.W. Park, J.A. Min, C. Hahn, X.Y. Gu, J.H. Choi, D.J. Kim, Plos One 8, e56936 (2013)ADSCrossRefGoogle Scholar
  3. 3.
    B.X. Du, J. Li, W. Du, IEEE Trans. Dielectr. Electr. Insul. 20, 947 (2013)CrossRefGoogle Scholar
  4. 4.
    A.L. Moore, L. Shi, Mater. Today 17, 163 (2014)CrossRefGoogle Scholar
  5. 5.
    A. Vlad, N. Singh, C. Galande, P.M. Ajayan, Adv. Energy Mater. 5, 1402115 (2015)CrossRefGoogle Scholar
  6. 6.
    C. Stacey, A.J. Simpkin, R.N. Jarrett, Int. J. Thermophys. 37, 107 (2016)ADSCrossRefGoogle Scholar
  7. 7.
    X. Lu, G. Xu, J. Appl. Polym. Sci. 65, 2733 (2015)CrossRefGoogle Scholar
  8. 8.
    K. Chano, G.M. Poliskie, J. Fregoso, IEEE Trans. Compon. Packag. Manufac. Technol. 7, 217 (2017)Google Scholar
  9. 9.
    J.P. Gwinn, R.L. Webb, Microelectron 34, 215 (2003)CrossRefGoogle Scholar
  10. 10.
    J. Due, A.J. Robinson, Appl. Therm. Eng. 50, 455 (2013)CrossRefGoogle Scholar
  11. 11.
    W. Park, Y. Guo, X. Li, J. Hu, L. Liu, X. Ruan, Y.P. Chen, J. Phys. Chem. C 119, 26753 (2015)CrossRefGoogle Scholar
  12. 12.
    J.Y. Zhu, S.Y. Tang, K. Khoshmanesh, K. Ghorbani, ACS Appl. Mater. Interfaces 8, 2173 (2016)CrossRefGoogle Scholar
  13. 13.
    C. Clavero, Nat. Photonics 8, 95 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    Z. Lin, A. Mcnamara, Y. Liu, K.S. Moon, C.P. Wong, Compos. Sci. Technol. 90, 123 (2014)CrossRefGoogle Scholar
  15. 15.
    S. Subramani, M. Devarajan, IEEE Trans. Device Mater. Reliab. 14, 30 (2014)CrossRefGoogle Scholar
  16. 16.
    A. Hakamy, F.U.A. Shaikh, I.M. Low, J. Mater. Sci. 49, 1684 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    P. Lv, X.W. Tan, K.H. Yu, R.L. Zheng, J.J. Zheng, W. Wei, Carbon 99, 222 (2016)CrossRefGoogle Scholar
  18. 18.
    M. Obori, S. Nita, A. Miura, J. Shiomi, J. Appl. Phys. 119, 055103 (2016)ADSCrossRefGoogle Scholar
  19. 19.
    G. Li, Y. Ji, Q. Zhang, B. Tian, H. Ma, J. Heat Transfer 138, 080911 (2016)CrossRefGoogle Scholar
  20. 20.
    P. Anithambigai, S. Shanmugan, D. Mutharasu, T. Zahner, D. Lacey, Microelectron. J. 45, 1726 (2014)CrossRefGoogle Scholar
  21. 21.
    B.F. Donovan, C.J. Szwejkowski, J.C. Duda, R. Cheaito, J.T. Gaskins, C.Y.P. Yang, P.E. Hopkins, Appl. Phys. Lett. 105, 203502 (2014)CrossRefGoogle Scholar
  22. 22.
    C.K. Roy, S. Bhavnani, M.C. Hamilton, R.W. Johnson, R.W. Knight, D.K. Harris, Microelectron. Reliab. 55, 2698 (2015)CrossRefGoogle Scholar
  23. 23.
    X. Sheng, C. Robert, S. Wang, G. Pakeltis, B. Corbett, J.A. Rogers, Laser Photonics Rev. 9, L17 (2015)CrossRefGoogle Scholar
  24. 24.
    A.M. Morishita, C.K. Kitamura, A.T. Ohta, W.A. Shiroma, IEEE Antennas Wirel. Propag. Lett. 12, 1388 (2013)ADSCrossRefGoogle Scholar
  25. 25.
    N. Han, T.V. Cuong, M. Han, B.D. Ryu, S. Chandramohan, J.B. Park, J.H. Kang, Y.J. Park, K.B. Ko, H.Y. Kim, H.K. Kim, J.H. Ryu, Y.S. Katharria, C.J. Choi, C.H. Hong, Nat. Commun. 4, 1452 (2013)CrossRefGoogle Scholar
  26. 26.
    K.Q. Ma, J. Liu, J. Phys. D: Appl. Phys. 40, 4722 (2007)ADSCrossRefGoogle Scholar
  27. 27.
    X. Luo, Y. Zhang, C. Zanden, M. Murugesan, Y. Cao, L. Ye, J. Liu, J. Mater. Sci.: Mater. Electron. 25, 2333 (2014)Google Scholar
  28. 28.
    J. Wang, X.J. Zhao, Y.X. Cai, C. Zhang, W.W. Bao, Energy Convers. Manag. 101, 532 (2015)CrossRefGoogle Scholar
  29. 29.
    Y. Deng, J. Liu, Int. Commun. Heat Mass Transfer 37, 788 (2010)CrossRefGoogle Scholar
  30. 30.
    H. Ge, H. Li, S. Mei, J. Liu, Renew. Sustain. Energy Rev. 21, 331 (2013)CrossRefGoogle Scholar
  31. 31.
    J. Liu, U. Sahaym, I. Dutta, R. Raj, M. Renavikar, R.S. Sidhu, R. Mahajan, J. Mater. Sci. 49, 7844 (2014)ADSCrossRefGoogle Scholar
  32. 32.
    H.J.C.T. Hennepe, D. Bargeman, M.H.V. Mulder, C.A. Smolders, J. Membr. Sci. 35, 39 (2017)CrossRefGoogle Scholar
  33. 33.
    C.B. Eaker, M.D. Dickey, Appl. Phys. Rev. 3, 149 (2016)CrossRefGoogle Scholar
  34. 34.
    Y. Lin, C. Ladd, S. Wang, A. Martin, J. Genzer, S.A. Khan, M.D. Dickey, Extreme Mech. Lett. 7, 55 (2016)CrossRefGoogle Scholar
  35. 35.
    B.L. Silva, A. Garcia, J.E. Spinelli, Mater. Charact. 114, 30 (2016)CrossRefGoogle Scholar
  36. 36.
    M.E. Trybula, T. Gancarz, W. Gąsior, Fluid Phase Equilib. 421, 39 (2016)CrossRefGoogle Scholar
  37. 37.
    C.Y. Ho, R.W. Powell, P.E. Liley, J. Phys. Chem. Ref. Data 1, 279 (1972)ADSCrossRefGoogle Scholar
  38. 38.
    H.C. Wang, C.L. Wang, W.B. Su, J. Liu, Y. Sun, H. Peng, L.M. Mei, J. Am. Ceram. Soc. 94, 838 (2011)CrossRefGoogle Scholar
  39. 39.
    Y. Tomizawa, K. Sasaki, A. Kuroda, R. Takeda, Y. Kaito, Appl. Therm. Eng. 98, 320 (2016)CrossRefGoogle Scholar
  40. 40.
    Y.L. Lee, L.C. Chen, Multimedia Syst. 21, 87 (2016)Google Scholar
  41. 41.
    A. Kylili, P.A. Fokaides, P. Christou, S.A. Kalogirou, Appl. Energy 134, 531 (2014)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Zuoye Lin
    • 1
  • Huiqiang Liu
    • 1
  • Qiuguo Li
    • 1
  • Han Liu
    • 1
  • Sheng Chu
    • 1
  • Yuhua Yang
    • 1
  • Guang Chu
    • 2
  1. 1.School of Materials Science and EngineeringSun Yat-sen UniversityGuangzhouPeople’s Republic of China
  2. 2.School of Metallurgy and EnvironmentCentral South UniversityChangshaChina

Personalised recommendations