Applied Physics A

, 124:310 | Cite as

Effects of pulse durations and environments on femtosecond laser ablation of stainless steel

Article
  • 128 Downloads

Abstract

The influence of pulse durations (35fs and 260 fs) and environments (air and vacuum) on the laser-induced damage thresholds (LIDTs) and ablation rates of 304 stainless steel were studied. Two distinct ablation regimes were obtained from the ablation rate curves. At low fluence regime, the ablation rates were similar in spite of the differences of pulse durations and experiment environments. At high fluence regime, the ablation rates of 35 fs pulse duration in vacuum were obviously higher than others. The ablation craters showed smooth edges, moth-eye such as structures, and laser-induced periodic surface structures (LIPSSs). At a fixed fluence, the periods of LIPSSs decreased monotonously in their mean spatial period between ~ 700 nm (5 pulses) and 540 nm (200 pulses) with the increase of pulse numbers in air with 35 fs pulse duration. The formation mechanisms of moth-eye like structures and LIPSSs were also discussed.

Notes

Acknowledgements

This work was supported by National Natural Science Foundation of China (NSFC) (Grant no: 51535003, 51701087); China Postdoctoral Science Foundation (Grant no: 2016M592709) and Sichuan Postdoctoral Science Foundation.

References

  1. 1.
    C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D.K. Kesim, Ö Akçaalan, S. Yavaş, M.D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, F. Ilday, Ablation-cooled material removal with ultrafast bursts of pulses. Nature 537, 84–89 (2016)ADSCrossRefGoogle Scholar
  2. 2.
    Z.G. Ou, M. Huang, F.L. Zhao, The fluence threshold of femtosecond laser blackening of metals: the effect of laser-induced ripples. Opt. Laser Technol. 79, 79–87 (2016)ADSCrossRefGoogle Scholar
  3. 3.
    M.E. Shaheen, J.E. Gagnon, B.J. Fryer, Laser ablation of iron: a comparison between femtosecond and picosecond laser pulses. J. Appl. Phys. 114, 083110 (2013)ADSCrossRefGoogle Scholar
  4. 4.
    C.S.R. Nathala, A. Ajami, W. Husinsky, B. Farooq, S.I. Kudryashov, A. Daskalova, I. Bliznakova, A. Assion, Ultrashort laser pulse ablation of copper, silicon and gelatin: effect of the pulse duration on the ablation thresholds and the incubation coefficients. Appl. Phys. A 122, 107 (2016)ADSCrossRefGoogle Scholar
  5. 5.
    C. Liang, B. Li, H. Wang, B. Li, J. Yang, L. Zhou, H. Li, X. Wang, Ch Li, Preparation of hydrophobic and oleophilic surface of 316 L stainless steel by femtosecond laser irradiation in Water. J. Dispers. Sci. Technol. 35, 1345–1350 (2014)CrossRefGoogle Scholar
  6. 6.
    A.E. Wynne, B.C. Stuart, Rate dependence of short-pulse laser ablation of metals in air and vacuum. Appl. Phys. A 76, 373–378 (2003)ADSCrossRefGoogle Scholar
  7. 7.
    M. Pfeiffer, A. Engel, G. Reisse, S. Weissmantel, Microstructuring of fused silica using femtosecond laser pulses of various wavelengths. Appl. Phys. A 121, 689–693 (2015)ADSCrossRefGoogle Scholar
  8. 8.
    S. Amoruso, R. Bruzzese, X. Wang, N.N. Nedialkov, P.A. Atanasov, Femtosecond laser ablation of nickel in vacuum. J. Phys. D: Appl. Phys. 40, 331 (2007)ADSCrossRefGoogle Scholar
  9. 9.
    S. Bruening, G. Hennig, S. Eifel, A. Gillner, Ultrafast scan techniques for 3D-µm structuring of metal surfaces with high repetitive ps-laser pulses. Phys. Procedia 12, 105–115 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    Q. Wang, A. Chen, S. Li, H. Qi, Y. Qi, Z. Hu, M. Jin, Influence of ambient pressure on the ablation hole in femtosecond laser drilling Cu. Appl. Opt. 54, 8235–8240 (2015)ADSCrossRefGoogle Scholar
  11. 11.
    Z.Q. Cui, Y.Q. Li, W.X. Wang, C. Lin, B.S. Xu, Effect of environmental media on ablation rate of stainless steel under femtosecond laser multiple raster scans. Chin. Opt. Lett 13(1), 011402 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    S.Z. Xu, C.Z. Yao, H.Q. Dou, W. Liao, X.Y. Li, R.J. Ding, L.J. Zhang, H. Liu, X.D. Yuan, X.T. Zu, An investigation on 800 nm femtosecond laser ablation of K9 glass in air and vacuum. Appl. Surf. Sci. 4069, 91–98 (2017)ADSCrossRefGoogle Scholar
  13. 13.
    P.T. Mannion, J. Magee, E. Coyne, G.M. O’Connor, T.J. Glynn, The effect of damage accumulation behaviour on ablation thresholds and damage morphology in ultrafast laser micro-machining of common metals in air. Appl. Surf. Sci. 233(1–4), 275–287 (2004)ADSCrossRefGoogle Scholar
  14. 14.
    F. Vidal, T.W. Johnston, S. Laville, O. Barthélemy, M. Chaker, B. Le Drogoff, J. Margot, M. Sabsabi, Critical-point phase separation in laser ablation of conductors. Phys. Rev. Lett. 86(12), 2573–2576 (2001)ADSCrossRefGoogle Scholar
  15. 15.
    J. Cheng, W. Perrie, B. Wu, S. Tao, S.P. Edwardson, G. Dearden, K.G.Watkins, Ablation mechanism study on metallic materials with a 10 ps laser under high fluence. Appl. Surf. Sci. 255, 8171–8175 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    W. Hu, Y. Shin, G. King, Energy transport analysis in ultrashort pulse laser ablation through combined molecular dynamics and Monte Carlo simulation. Phys. Rev. B 82, 094111 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    M.A. Jafarabadi, M.H. Mahdieh, Investigation of phase explosion in aluminum induced by nanosecond double pulse technique. Appl. Surf. Sci. 346, 263–269 (2015)ADSCrossRefGoogle Scholar
  18. 18.
    P. Lorazo, L.J. Lewis, M. Meunier, Short-pulse laser ablation of solids: from phase explosion to fragmentation. Phys. Rev. Lett. 91, 225502 (2003)ADSCrossRefGoogle Scholar
  19. 19.
    D. Perez, L.J. Lewis, Molecular-dynamics study of ablation of solids under femtosecond laser pulses. Phys. Rev. B 67, 184102 (2003)ADSCrossRefGoogle Scholar
  20. 20.
    N.N. Nedialkov, S.E. Imamova, P.A. Atanasov, P. Berger, F. Dausinger, Mechanism of ultrashort laser ablation of metals: molecular dynamics simulation. Appl. Surf. Sci. 247, 243–248 (2005)ADSCrossRefGoogle Scholar
  21. 21.
    S. Höhm, A. Rosenfeld, J. Krüger, J. Bonse, Femtosecond laser-induced periodic surface structures on silica. J. Appl. Phys. 112, 014901 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    F. Liang, R. Vallée, S.L. Chin, Mechanism of nanograting formation on the surface of fused silica. Opt. Express 20(4), 4389–4396 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    J. Bonse, J. Krüger, Pulse number dependence of laser-induced periodic surface structures for femtosecond laser irradiation of silicon. J. Appl. Phys. 108, 034903 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    M. Huang, F.L. Zhao, Y. Cheng, N.S. Xu, Z.Z. Xu, Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser. ACS Nano 3, 4062–4070 (2009)CrossRefGoogle Scholar
  25. 25.
    A.A. Ionin, Y.M. Klimachev, A.Y. Kozlov, S.I. Kudryashov, A.E. Ligachev, S.V. Makarov, L.V. Seleznev, D.V. Sinitsyn, A.A. Rudenko, R.A. Khmelnitsky, Direct femtosecond laser fabrication of antireflective layer on GaAs surface. Appl. Phys. B111(3), 419–423 (2013)ADSCrossRefGoogle Scholar
  26. 26.
    M.H. Dar, R. Kuladeep, V. Saikiran, N. Rao, D., Femtosecond laser nanostructuring of titanium metal towards fabrication of low-reflective surfaces over broad wavelength range. Appl. Surf. Sci. 371, 479–487 (2016)ADSCrossRefGoogle Scholar
  27. 27.
    F.T. Meng, J. Hu, W.N. Han, P.J. Liu, Q.S. Wang, Morphology control of laser-induced periodic surface structure on the surface of nickel by femtosecond laser. Chin. Opt. Lett. 13(6), 062201 (2015)ADSCrossRefGoogle Scholar
  28. 28.
    C.Z. Yao, S.Z. Xu, Y.Y. Ye, Y. Jiang, R.J. Ding, W. Gao, X.D. Yuan, The influence of femtosecond laser repetition rates and pulse numbers on the formation of micro/nano structures on stainless steel. J. Alloy. Compd. 722, 235–241 (2017)CrossRefGoogle Scholar
  29. 29.
    C.Z. Yao, Y.Y. Ye, B.S. Jia, Y. Li, R.J. Ding, Y. Jiang, Y.X. Wang, X.D. Yuan, Polarization and fluence effects in femtosecond laser induced micro/nano structures on stainless steel with antireflection property. Appl. Surf. Sci. 425, 1118–1124 (2017)ADSCrossRefGoogle Scholar
  30. 30.
    R. Le Harzic, D. Dorr, D. Sauer, M. Neumeier, M. Epple, H. Zimmermann, F. Stracke, Large-area uniform, high-spatial-frequency ripples generated on silicon using a nanojoule-femtosecond laser at high repetition rate. Opt. Lett. 36, 229–231 (2011)ADSCrossRefGoogle Scholar
  31. 31.
    M. Henyk, N. Vogel, D. Wolfframm, A. Tempel, J. Reif, Femtosecond laser ablation from dielectric materials: comparison to arc discharge erosion. Appl. Phys. A 69, S355–S358 (1999)ADSCrossRefGoogle Scholar
  32. 32.
    D.S. Milovanović, B. Gaković, C. Radu, M. Zamfirescu, B. Radak, S. Petrović, Z. Rogić Miladinović, I.N. Mihailescu, Femtosecond laser surface patterning of steel and titanium alloy. Phys. Scr. T162, 014017 (2014)ADSCrossRefGoogle Scholar
  33. 33.
    G.D. Tsibidis, E. Skoulas, E. Stratakis, Ripple formation on nickel irradiated with radially polarized femtosecond beams. Opt. Lett. 40(22), 5172–5175 (2015)ADSCrossRefGoogle Scholar
  34. 34.
    O. Armbruster, A. Naghilou, M. Kitzler, W. Kautek, Spot size and pulse number dependence of femtosecond laser ablation thresholds of silicon and stainless steel. Appl. Surf. Sci. 396, 1736–1740 (2017)ADSCrossRefGoogle Scholar
  35. 35.
    J.J.J. Nivas, Z.M. Song, R. Fittipaldi, A. Vecchione, R. Bruzzese, S. Amoruso, Direct ultrashort laser surface structuring of silicon in air and vacuum at 1055 nm. Appl. Surf. Sci. 417, 149–154 (2017)ADSCrossRefGoogle Scholar
  36. 36.
    J.J.J. Nivas, F. Gesuele, E. Allahyari, S.L. Oscurato, R. Fittipaldi, A. Vecchione, R. Bruzzese, S. Amoruso Effects of ambient air pressure on surface structures produced by ultrashort laser pulse irradiation. Opt. Lett. 42, 2710–2713 (2017)ADSCrossRefGoogle Scholar
  37. 37.
    T.Q. Jia, Z.Z. Xu, R.X. Li, D.H. Feng, X.X. Li, C.F. Cheng, H.Y. Sun, N.S. Xu, H.Z. Wang, Mechanisms in fs-laser ablation in fused silica. J. Appl. Phys. 95, 5166 (2004)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Shizhen Xu
    • 1
    • 2
  • Renjie Ding
    • 1
  • Caizhen Yao
    • 2
  • Hao Liu
    • 2
  • Yi Wan
    • 1
  • Jingxuan Wang
    • 2
  • Yayun Ye
    • 2
  • Xiaodong Yuan
    • 2
  1. 1.School of PhysicsUniversity of Electronic Science and Technology of ChinaChengduChina
  2. 2.Laser Fusion Research CenterChina Academy of Engineering PhysicsMianyangChina

Personalised recommendations